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Abstract

Over the past decade, there has been a surge of empirical research investigating mental disorders as complex
systems. In this article, we investigate how to best make use of this growing body of empirical research and
move the field toward its fundamental aims of explaining, predicting, and controlling psychopathology. We
first review the contemporary philosophy of science literature on scientific theories and argue that fully
achieving the aims of explanation, prediction, and control requires that we construct formal theories of mental
disorders: theories expressed in the language of mathematics or a computational programming language. We
then investigate three routes by which one can use empirical findings (i.e., data models) to construct formal
theories: (a) using data models themselves as formal theories, (b) using data models to infer formal theories,
and (c) comparing empirical data models to theory-implied data models in order to evaluate and refine an
existing formal theory. We argue that the third approach is the most promising path forward. We conclude
by introducing the abductive formal theory construction (AFTC) framework, informed by both our review of
philosophy of science and our methodological investigation. We argue that this approach provides a clear
and promising way forward for using empirical research to inform the generation, development, and testing
of formal theories both in the domain of psychopathology and in the broader field of psychological science.

Translational Abstract

Over the last decade, there has been a surge of empirical research investigating mental disorders as net-
works of interacting symptoms. This rapidly growing empirical literature has raised a critical question:
How can we best make use of these empirical findings to achieve our aim of explaining, predicting, and
controlling mental disorders? In this article, we argue that achieving these aims requires the construction
of formal theories and we investigate how empirical research can best inform the construction of well-
developed formal theories. We begin by reviewing the philosophy of science literature to clarify the na-
ture of formal theories, data models, and the relationship between them. We identify three plausible
ways in which empirical data models can be used to develop formal theories. In the first, data models
are treated as formal theories. In the second, data models are used to make direct inferences about the
real world and, thereby, inform the development of a formal theory. In the third, the empirical data
model is compared to a theory-implied data model, and any differences between them is used to inform sub-
sequent theory development. Using simulations from a computational model of panic disorder, we investi-
gate which of these three routes best informs the development of formal theories of psychopathology and
conclude that the third approach is most promising. We then build on this evaluation by proposing the
abductive formal theory construction (AFTC) framework: a three-stage framework rooted in abductive infer-
ence and the comparison between theory-implied and empirical data models. We argue that this approach
provides a challenging, yet promising way forward for using empirical research to construct formal theories.
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Mental disorders are complex phenomena: highly heterogene-
ous and massively multifactorial (e.g., Kendler, 2019). In recent
years, researchers have called for approaches to psychiatric
research that embrace this complexity, evaluating how mental dis-
orders operate as complex systems (Gardner & Kleinman, 2019;
Hayes & Andrews, 2020). The “network approach” to psychopa-
thology addresses these calls, conceptualizing mental disorders as
systems of interacting components, with emphasis on causal rela-
tions among the symptoms of a disorder (e.g., Borsboom, 2017;
Borsboom & Cramer, 2013; Schmittmann et al., 2013). From this
perspective, symptoms are not caused by an underlying disorder,
rather the symptoms themselves and the causal relations among
them constitute the disorder.

The notion that causal relationships among symptoms may fig-
ure prominently in the etiology of mental disorders has stimulated
a rapidly growing body of empirical research (for reviews see e.g.,
Contreras et al., 2019; Robinaugh et al., 2019). Most of this work
employs statistical models that allow researchers to study the mul-
tivariate dependencies among symptoms. This quickly expanding
empirical literature has provided rich information about the statis-
tical relationships among those symptoms. However, it has also
raised a significant concern: it remains unclear precisely how best
to make use of this growing number of empirical findings to pro-
duce advances in our understanding of how mental disorders oper-
ate as complex systems.

This problem is not unique to the network approach to psycho-
pathology. Psychiatry and applied psychology produce a massive
number of empirical findings every year, yet genuine progress to-
ward our fundamental aims of explaining, predicting, and control-
ling mental disorders has remained stubbornly out of reach. In
psychology more broadly, there is a growing concern that psycho-
logical theory is in a state of crisis (Oberauer & Lewandowsky,
2019; Muthukrishna & Henrich, 2019; Smaldino, 2019). Theories
are rarely developed in a way that would indicate a genuine accumu-
lation of knowledge, suggesting that we are failing to leverage the
steady stream of empirical findings from psychological science into
genuine understanding of psychological phenomena (Meehl, 1978).

Recently, we and others have argued that formalizing psycho-
logical theories as mathematical or computational models can help
address the theory crisis in psychology (Borsboom et al., 2020;
Fried, 2020; Guest & Martin, 2020; Robinaugh et al., 2021; Smal-
dino, 2017; van Rooij & Baggio, 2020). Formal theories have
been fruitfully used in some areas of psychology, such as mathe-
matical psychology (Estes, 1975), cognitive psychology (Ritter et
al., 2019), and computational psychiatry (Friston et al., 2017;
Huys et al, 2016), but remain relatively rare outside these
domains. More expansive use of formal theories, it is hoped, will
equip theorists with tools for more rigorously generating and eval-
uating theories, laying the groundwork for accumulative advance-
ment of psychological knowledge (Robinaugh et al., 2021).
However, much remains unknown about how best to construct for-
mal theories in domains such as clinical psychology, and even less
is known about how best to use empirical data models to inform
theory construction.

In this article, we aim to address this gap in the literature by
examining how data models commonly used within the network
approach literature can best inform the construction of formal the-
ories. We begin by discussing the nature of formal theories, the na-
ture of data models, and their relation to one another. We identify

three ways in which data models can be used to inform the con-
struction of formal theories: (a) treating data models themselves as
formal theories, (b) drawing direct inferences from data models to
generate a formal theory, and (c) comparing theory-implied data
models and empirical data models in order to evaluate and refine
an existing formal theory. In which follows, we investigate each of
these approaches in the context of the network approach to psy-
chopathology, using an example in which the true underlying sys-
tem is known and evaluating which approach best informs the
development of a theory of that system. Our analysis suggests that
the third approach comparing theory-implied and empirical data
models, though rare in psychology, is the most promising path for-
ward. In the penultimate part of the paper, we propose the abduc-
tive formal theory construction (AFTC) framework: a staged
methodology for theory construction built around the approach of
comparing theory-implied and empirical data models. Using this
framework, we detail how best to use empirical data models at
each stage of theory construction, including the generation, devel-
opment, and testing of psychological theories.

Data Models and Formal Theories

In this section we will examine the nature of scientific theories
and how they support explanation, prediction, and control. We
will begin by introducing four key concepts that we will use
throughout the remainder of the article: theory, target system, data,
and data model (see Figure 1). We will illustrate each of these con-
cepts using the example of panic disorder.

Theories, Phenomena, and Target Systems

Theories seek to explain phenomena: stable, recurrent, and gen-
eral features of the world (Bogen & Woodward, 1988; Haig, 2008,
2014) such as the melting point of lead or the orbit of planets. In
psychiatry, the most common phenomena to be explained are
symptoms and syndromes. For example, researchers seek to
explain the tendency for some individuals to experience panic
attacks and the tendency for recurrent panic attacks to be accom-
panied by persistent worry about those attacks and avoidance of
situations in which they may occur (Spitzer et al., 1980), thereby
cohering as the syndrome known as panic disorder.

Theories aim to explain phenomena by representing farget sys-
tems: the particular parts of the real world and the relationships
among them that give rise to the phenomena of interest (cf. Elliott-
Graves, 2014). Theories can thus be understood as models that
represent the target system (Sudrez & Pero, 2019).! In psychiatric
research, the target system comprises any components of the real
world that give rise to these symptoms and syndromes, and may

include genetic, neurobiological, physiological, emotional,

! The precise nature of scientific theories is a subject of ongoing debate
among philosophers of science and the relationship between theories and
models is muddled by inconsistent and often conflicting use of these terms
across time, disciplines, and scientists (for a brief history of models and
their relation to theory, see Bailer-Jones, 2009). In this article, we will
adopt the perspective that theories are models (Sudrez & Pero, 2019).
However, the core arguments presented in this article do not require this
precise conceptualization of theories and would similarly hold for
pragmatic accounts that regard models as an intermediary between theory
and the real world (e.g., Bailer-Jones, 2009; Cartwright, 1983).



publishers.

ychological Association or one of its allied

ghted by the American Ps

t=4

This document is copyri
This article is intended solely for the personal use of the individual user and is not to be disseminated broadly.

MODELING PSYCHOPATHOLOGY: FROM DATA MODELS TO FORMAL THEORIES 3

Figure 1

Key Concepts Theory, Target System, Data, and Data Model

Theory

Note.

Data Model

Data

Vi V2 V3 V4

1.58 3.00 247 4.01
283 6.13 4.89 233
482 3.46 6.73 544
0.64 572 391 254
511 449 227 4.03

The figure illustrates the concepts theory, target system, data, and data model. The

target system is the system consisting of interacting components that gives rise to phenom-
ena. Phenomena are robust features of the world captured by data models. Theories repre-
sent the structure of the target system, proposing a set of components C and the relations
among them and positing that they give rise to the phenomena. Data for variables V are
obtained by taking measurements of the components of the target system.

cognitive, behavioral, social, and cultural components. Theories of
psychopathology aim to represent these target systems, positing a
specific set of components and relationships among them that give
rise to the phenomena of interest. For example, researchers have
generated numerous theories of panic disorder, specifying a set of
components that they think interact to give rise to panic attacks
and panic disorder. Among these, perhaps the most influential is
Clark’s cognitive model of panic attacks, which posits that “if
[stimuli] are perceived as a threat, a state of mild apprehension
results. This state is accompanied by a wide range of bodily sensa-
tions. If these anxiety-produced sensations are interpreted in a cata-
strophic fashion, a further increase in apprehension occurs. This
produces a further increase in bodily sensations and so on round in
a vicious circle which culminates in a panic attack” (Clark, 1986).
This cognitive theory of panic attacks specifies components (e.g.,
bodily sensations and a state of apprehension) and the relations
among them (e.g., the “vicious cycle” of positive causal effects),
positing that this is the target system that gives rise to panic attacks.

Because theories represent the target system, we can reason
from theory in order to draw conclusions about the target system
and the phenomena that arise from it. It is this capacity for surro-
gative reasoning (Swoyer, 1991) that allows theories to explain,
predict, and control the world around us. For example, we can
explain the rise and fall of predator and prey populations in the
real world by appealing to the relationships between components
specified in mathematical models representing these populations
(H. I. Freedman, 1980; Nguyen & Frigg, 2017). We can predict
what will occur when two atoms collide by deriving the expected

outcome from models of particle physics (Higgs, 1964). And we
can determine how to intervene to prevent panic attacks by appeal-
ing to the relationships posited in the cognitive model of panic
attacks, determining that an intervention modifying a patient’s
“catastrophic misinterpretations” should prevent the “vicious
cycle” between arousal and perceived threat, thereby circumvent-
ing panic attacks (Clark, 1986). It is this ability to support surroga-
tive reasoning that makes theories such powerful tools.

The Importance of Formal Theories

Surrogative reasoning relies on a theory’s structure: its com-
ponents and the relations among them (Pero, 2015). This struc-
ture can be expressed in natural language (i.e., verbal theory) or
a formal language, such as mathematics or computation (i.e., for-
mal theory). For example, a verbal theory would state that the
rate of change in an object’s temperature is proportional to the
difference between its temperature and the temperature of its
environment. A formal theory would instead express this rela-
tionship as a mathematical equation, such as 4f = —k(T — E),
where % is the rate of change in temperature, 7 is the object’s
temperature, and E is the temperature of the environment; or in a
computational programming language, such as: for (¢ in 1:end)
(Tlt+1]=Tt]-kX(T[t]-E)}.

Expressing a theory in a mathematical or computational pro-
gramming language gives formal theories many advantages over
verbal theories (Epstein, 2008; Lewandowsky & Farrell, 2010;
Smaldino, 2017; Smith & Conrey, 2007; Robinaugh et al., 2021).
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For our purposes here, there is one advantage of particular impor-
tance: Formalization enables precise deduction of the behavior
implied by the theory. Verbal theories can, of course, also be used
to deduce theory-implied behavior. However, due to the vagaries of
language, verbal theories are typically imprecise, precluding exact
predictions. For example, the verbal theory of temperature cooling
described in the previous paragraph allows for some general sense
of how the object’s temperature will evolve over time, but cannot
be used to make specific predictions about how it will change or
what the temperature will be at any given point in time. Indeed,
because of the imprecision of verbal theories, there are often multi-
ple ways in which those theories could be interpreted and imple-
mented, each with a potentially divergent prediction about how the
target system will evolve over time (Robinaugh et al., 2021). Con-
sider the interpersonal theory of suicide, which posits that suicide
arises from the simultaneous experience of perceived burdensome-
ness and thwarted belongingness (Van Orden et al., 2010). This
theory fails to specify many aspects of this causal structure, such as
the strength of these effects or the duration for which they must
overlap before suicidal behavior arises (Hjelmeland & Loa Knizek,
2018). As a result, there are many possible implementations of this
verbal theory, each of which could potentially lead to a different
prediction about when suicidal behavior should be expected to arise
(Millner et al., 2020). This imprecision thus substantially limits the
theories ability to support surrogative reasoning and the degree to
which we can empirically test the theory.

In contrast, formal theories are precise in their implementation as
the mathematical notation or code in a computer programming lan-
guage forces one to be specific about the structure of the theory
(e.g., specifying the precise effect of one component on another).>
The precision of formal theories allows us to deduce precisely how
the target system will behave. This deduction can either be obtained
analytically (e.g., from the mathematical equation) or computation-
ally (e.g., through simulations from a computational model). For
example, whereas the verbal theory of cooling only permitted a
general sense of how the temperature will evolve over time, we can
use the formal theory of cooling to predict the exact temperature of
our object at any point in the future. Similarly, a formal implemen-
tation of the interpersonal theory of suicide would make highly spe-
cific predictions that could inform the prediction of suicide attempts
(Millner et al., 2020). In other words, formal theories substantially
strengthen surrogative reasoning, the very characteristic of scientific
theories upon which we wish to capitalize.

The cognitive model of panic attacks described above is a
verbal theory and is limited by the imprecision characteristic of
most verbal theories. For example, in two recent articles, Fukano
and Gunji (2012) and Robinaugh et al. (2020) independently pro-
posed two distinct formal implementations of this theory: taking
the verbal theory and expressing it in two sets of differential equa-
tions. Notably, these distinct implementations of the same verbal
theory make divergent predictions about when panic attacks
should occur, illustrating the limitations of failing to precisely
specify the theory (for further detail, see Robinaugh et al., 2019;
Robinaugh et al., 2021).

In this article, we will make extensive use of the formal theory
proposed by Robinaugh and colleagues. A complete description of
the generation of this theory can be found in the original article
(Robinaugh et al., 2019). For our purposes here, it is sufficient to
note that the aim in developing this model was to take extant

verbal theories, especially cognitive behavioral theories, and
express them in the language of mathematics. For example,
Clark’s verbal theory posits that a perception of threat can lead to
arousal-related bodily sensations. However, the actual form and
strength of this effect remain unspecified. In the mathematical
model, we used a differential equation to precisely define this
effect: ¥ = o(vT — A). In this equation, there is a linear effect of
perceived threat (7) on the rate of change of arousal (A), with the
strength of this effect specified by the parameter v. The product of
v and T is the value arousal is pulled toward: If vT is smaller than

the current level of arousal, ‘2—? will be negative and arousal will

decrease toward vT; if VT is greater than arousal, ‘f,—*,‘ is positive and

arousal increases toward vT. That is, arousal is pulled toward V7,
which is a linear function of 7. Each model component was
defined as a differential equation in this way (see middle panel in
Figure 2), providing a formal theory of panic disorder.

By specifying the structure of the theory in the language of
mathematics, we are able to solve the system numerically, thereby
deducing the theory’s predictions about how the target system will
behave. We were able to demonstrate, for example, that when the
effect of arousal on perceived threat is sufficiently strong, the posi-
tive feedback between these components is sufficient to send the
system into runaway positive feedback, producing the characteris-
tic surge of arousal, perceived threat, and escape behavior that we
refer to as a panic attack (see right panel in Figure 2). That is, we
were able to show, rather than merely assert, that the theory can
explain the phenomenon of panic attacks. As this example illus-
trates, formalizing theory substantially strengthens our ability to
deduce theory-implied target system behavior. A full realization of
a theory’s usefulness thus all but requires that the theory be for-
malized. For that reason, our aim in psychiatric research should
not merely be the construction of theories, but the construction of
formal theories.

Data and Data Models

Our brief overview of the philosophy of science literature on
theory suggests that if our aim is the explanation, prediction, and
control of mental disorders, what we are after are well-developed
formal theories: mathematical or computational models that repre-
sent the target system that gives rise to phenomena of interest. The
key question then becomes: How can we best construct such a for-
mal theory? The answer to this question will, of course, involve
the collection and analysis of data. However, theories typically do
not aim to explain data directly. Data are sensitive to the context
in which they are acquired and subject to myriad causal influences
that are not of core interest (Woodward, 2011). For example, panic
disorder researchers collect data from diagnostic interviews, self-
report symptom inventories, assessments of physiological arousal
during panic attacks, time-series data, and a host of other methods.
Data gathered using these methods will be influenced not only by

21t is, of course, possible to express verbal theories with the same level
of precision as is provided by a mathematical equation (e.g., there are very
few equations in the Principia, yet the laws Newton describes are not
lacking in precision). Nonetheless, the specificity required by mathematics
or computational programming makes them more amenable to expressing
theories precisely and has the considerable practical advantage of
supporting the derivation of predictions from the theory.
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Figure 2
Causal Diagram, Formal Theory, and Simulated Data of the Formal Theory of Panic Disorder by Robinaugh et al. (2019)
Causal Formal Simulated
Diagram Theory Data
dA 1.00 7 M Arousal
Areusal 2 = “(OT = A) —cH +N) Panic Attack ~, || T G et
Schema 075 ‘
dT AM 050 -
’ E=Y((A“+A”_T)_TE)
\ 4
Perceived dE - 0% ‘
Threat i — : A
e 8(TG+ oo E) 000 - eenes . ‘
0 3 6 9

Note. The left panel displays the key components of the theory proposed by Robinaugh et al. (2019) at play during panic attacks: arousal, perceived
threat, escape behavior, and arousal schema. The arrows indicate the direct causal relationships which are posited to operate between these components in
the formal theory. The middle panel displays the formal theory that specifies the precise nature of the relations among these components. The top equa-

tion defines the rate of change in arousal % where A is arousal, T is perceived threat, H is homeostatic feedback, and N is a noise variable representing

fluctuations in arousal due to both internal and external stimuli. The rate parameter o specifies the intrinsic rate at which arousal can change, and the slope
parameters v and x determines the strength of the effect of perceived threat and homeostatic feedback on arousal, respectively. The middle equation

defines the rate of change in perceived threat %, which depends on arousal schema through the parameter L. The state variable E denotes escape behavior.

The rate parameter v specifies the rate at which perceived threat can change, the parameters A and p together specify the strength of arousal on perceived

threat, and the parameter p specifies the strength of the effect of escape behavior on perceived threat. The final equation specifies the rate of change in

escape behavior % as a function of perceived threat, which is determined by the rate parameter € and two parameters specifying the strength of perceived

threat’s effect on escape behavior: p and . The final panel on the right depicts the simulated behavior defined by these equations and, thus, implied by

the theory.

the experience of panic attacks, but also by recall biases, response
biases, sensor errors, and simple human error. Accordingly, theo-
ries do not aim to account for specific “raw” data. Rather, theories
explain phenomena identified through robust patterns in the data
that cannot be attributed to the particular manner in which the data
were collected (e.g., researcher biases, measurement error, meth-
odological artifacts). To identify these empirical regularities in
data, researchers use data models: representations of the data
(Kellen, 2019; Suppes, 1962). Data models can take many forms.
These can range from the most basic descriptive tools, such as a
mean score, a correlation, or a fitted curve, to more complex statis-
tical tools which are common in different areas of psychology and
beyond, such as structural equation models (SEM), item response
theory (IRT) models, time-series models, hierarchical models, net-
work models, mixture models, loglinear models, and so forth.
Essentially, we can consider a data model to be any descriptive
statistic or statistical model that in some way summarizes the data.

Three Routes From Data Models to Formal Theories

Data models are ubiquitous in psychological research, most com-
monly appearing within the context of null-hypothesis significance
tests. The question of how best to use data models to test formal
theories is a critical one (Meehl, 1978, 1990), and one to which we
will return later in this article. However, we will first focus on
the question of how to use data models to generate and develop the
kinds of formal theories that are ready to be subjected to rigorous
testing. We see three possible routes researchers may take to move
from data models to formal theories.

The first route arrives at theories directly by treating data models
as formal theories. In this case, the transition from data model to
formal theory is largely an act of interpretation. Instead of interpret-
ing a data model as a representation of the data, we interpret it as a
representation of the target system (see Figure 3, left panel). Specif-
ically, the variables of the data model are treated as the components
of our theory, and the statistical relationships among variables are
treated as the structural relationships among the theory components.
From this perspective, research is carried out by conducting an em-
pirical study, estimating a data model, and treating the data model
as a theory. If viable, this approach would be extremely powerful.
A well-developed formal theory would be just one well-designed
study away. Although we suspect that few researchers would ex-
plicitly endorse this approach, in practice, even seasoned research-
ers may fall victim to the tendency to interpret their statistical
models as representations of the target system. For example, much
recent debate in the psychopathology literature has focused on the
interpretation of latent variable models. One can take the position
that latent variables are simply data models: summaries of the cova-
riances between items in the data and nothing more. Alternatively,
one can interpret them as theoretical models, with latent variables
representing some common underlying cause that explains the phe-
nomenon of item covariances (Borsboom et al., 2003). Although
many would likely endorse the former characterization, evidence of
the latter can often be found in the description of factor analytic
findings (e.g., when describing the identification of “underlying”
factors that “account” for item covariance). Accordingly, we sus-
pect that this route to theory may be more common than a mere
show of hands would suggest (including in the network approach).
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Figure 3

Three Routes From Data Models to Formal Theories

Use Data Models
as Formal Theories

Use Data Models
to Infer Formal Theories

Use Data Models
to Develop Formal Theories

Formal Data Formal Data "%F;Iti:d ,{ Data
Theory Model Theory Model Model Model
Target L, Data Target Data Simulated Data
System System Data
— Production e » Inference Formal Target
——=a  Representation »—<  Comparison Theory System

Note.

The figure provides an overview of three routes to developing formal theories using data models. In the

left panel, data models are treated as formal theories. In the middle panel, data models are used to draw infer-
ences about the target system and, thereby, to generate formal theories of that system. In the right panel, data
models used to develop formal theories by deducing implied data models and comparing them with empirical

data models.

The second route arrives at formal theories by drawing direct
inferences from data models (Figure 3, middle panel). That is, the
data model is not directly treated as a theory, but rather as a kind
of direct inference tool. From this perspective, research is carried
out by conducting an empirical study, estimating a data model,
and using the data model to infer characteristics of the target sys-
tem, thereby informing the development of a theory. For example,
one could observe a conditional dependence relationship between
two variables and infer the presence of a causal relationship
between the corresponding components in the target system. Mul-
tiple linear regression techniques—which statistically control for
many covariates not of primary interest—are often used in this
way, though interpretations of parameters themselves as being
causal in nature are often studiously avoided (Grosz et al., 2020;
Rohrer, 2018). Although this strategy is perhaps the most difficult
to study or even define, since it relies on often undefined inference
rules for particular data models, we suspect it is the most common
approach to informing theory generation in many areas of psychology.

The third route arrives at formal theories through comparison
between theory-implied data models (i.e., the data model predicted
by our theory) and empirical data models. Some version of this
approach is common in areas of psychology with well-developed
traditions of formal theory (e.g., mathematical psychology and
cognitive psychology), but is rarely applied outside these areas. In
this route, research is carried out by first generating an initial for-
mal theory. From this initial formal theory, we simulate data
which can then be used to obtain a theory-implied data model. We
can then compare the implied data model with the empirical data
model, and adapt the formal theory if there are meaningful dis-
crepancies between the two. This route thus relies upon the
“immense deductive fertility”” of formal theories (Meehl, 1978, p.
825) to make precise predictions about what data models we
should expect to observe in our empirical data. By comparing
these theory-implied data models to data models derived from

empirical data, we can inform how the theory should be revised to
be brought in line with empirical data. In other words, in this
route, formal theory is not only the ultimate goal of the research
process, it also plays a central role in theory development.

The three routes outlined here capture distinct ways in which
researchers may use data models to inform formal theories. How-
ever, a key question remains: Which of these three strategies is
most appropriate? Which will best help us achieve our aim of con-
structing well-developed formal theories that are sufficiently good
representations of the target system that they support explanation,
prediction, and control? The answer to this question is likely to be
context specific, depending on the target system, the level(s) on
which we aim to have such a theory, and the data and data models
which are available to us. Accordingly, in the next section, we will
focus on answering a more tractable question: Which route to for-
mal theory is likely to be most fruitful within the broad theoretical
framework of conceptualizing mental disorders as complex systems?

Evaluating Three Routes From Data Models to
Formal Theories

We will evaluate the three routes from data models to formal
theories with a focus on three data models that have become popu-
lar within the network approach to psychopathology: the Ising
model, the Gaussian graphical model (GGM), and the vector
autoregressive (VAR) model. We use these data models due to
their popularity in the network approach literature and because
they are broadly representative of—and share close connections to
—the linear models typically used by applied researchers.

Route 1: Using Data Models as Formal Theories

The first route from data model to formal theory suggests that
data models can themselves serve as formal theories. For this to be
the case, the properties of those data models must be able to
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represent the properties we expect in the target system. Accord-
ingly, to evaluate the first route (Figure 3, left panel), we must first
outline the properties we expect in our target systems when work-
ing from the complex systems perspective and then evaluate
whether these properties are captured by our data models of
interest.

Properties of Mental Disorder Target Systems

Adopting the perspective that mental disorders arise, in part,
from a complex network of interacting symptoms, there are a num-
ber of properties we would expect to be present in the target sys-
tem. First, feedback loops among components are likely present.
Researchers have frequently posited “vicious cycles,” where the
initial activation of one component (e.g., arousal) elicits activation
of other components (e.g., perceived threat) which, in turn, further
amplifies the activation of the original component. Second, causal
effects between components are likely to be asymmetrical. That is,
the effect of Component A on Component B may differ from the
effect of Component B on Component A. For example, it is
unlikely that concentration has the same effect on sleep as sleep
has on concentration or that compulsions have the same effect on
obsessions that obsessions have on compulsions. Third, interac-
tions among components are likely to occur at different time
scales. For example, the effect of intrusive memories on physio-
logical reactivity in posttraumatic stress disorder is likely to occur
on a time scale of seconds to minutes, whereas an effect of energy
on depressed mood may play out over the course of hours to days,
and the effect of appetite on weight gain may occur on a time scale
of days to weeks. Fourth, it is likely that there are higher order
interactions among components. For example, the presence of
sleep difficulties may strengthen the effect of feelings of worth-
lessness on depressed mood or the effect of intrusive trauma mem-
ories on physiological reactivity. If data models are to serve as
formal theories of the target system, they must be able to represent
these types of causal structures.

We would further suggest that most, perhaps all, mental disor-
der target systems are likely to have multiple stable states. That is,
multiple states into which the system can settle and remain in the
absence of external perturbation. In the simplest case, the system
can be characterized by the presence of two stables states: an
unhealthy state (e.g., a state of elevated symptom activation, such
as a depressive episode), and a healthy state (e.g., a state without
elevated symptom activation). In other cases, there may be multi-
ple stable states (e.g., healthy, depressed, and manic states in bipo-
lar disorder). The presence of multiple stable states is, in turn,
likely to be accompanied by other behavior often observed in men-
tal disorders, including spontaneous recovery and sudden shifts
into or out of a state of psychopathology, further suggesting that a
model of any given mental disorder will almost certainly need to
able to produce alternative stable states.

Comparing Target System Properties With Data Model
Properties

The first model we will consider is the VAR model. The VAR
model for multivariate continuous time-series data linearly relates
each variable at time point 7 to all other variables and itself at pre-
vious time points (Hamilton, 1995), typically the time point imme-
diately prior 7 — 1 (i.e., a first order VAR, or VAR(1), model; e.g.,

Bringmann et al., 2013; Fisher et al., 2017; Groen et al., 2020; Pe
et al., 2015; Snippe et al., 2017). The estimated lagged effects of
the VAR models indicate conditional dependence relationships
among variables over time. The dynamics of the model is such
that the variables are perturbed by random input (typically Gaus-
sian noise) and the variables return to their means, which represent
the single stable state of the system.

As depicted in Figure 4, the VAR model is able to represent
some key characteristics likely to be present in mental disorder tar-
get systems. Most notably, it allows for feedback loops. Variables
can affect themselves both directly (e.g., X; — X;11), or via their
effects on other variables in the system (e.g., X; — Y11 — Xi42).
The VAR model also allows for asymmetric relationships, because
the effect X, — Y, does not have to be the same effect as ¥, —
X,+ in sign or magnitude. However, because the lag-size (i.e., the
distance between time points) is fixed and consistent across all
relationships, the VAR model does not allow for dynamics which
unfold at different time scales. Moreover, because the VAR model
only includes relations between pairs of variables, it is unable to
represent higher-order interactions involving more than two varia-
bles. Finally, the VAR model has a single stable state defined by
its mean vector and thus cannot represent multiple stable states of
a system, such as a healthy state and unhealthy state.

The second model we will consider is the GGM, which linearly
relates pairs of variables in either cross-sectional (Haslbeck &
Fried, 2017) or time-series data (Epskamp et al., 2018). In the case
of time-series data the GGM models the relationships between var-
iables at the same time point. Because it does not model any de-
pendency across time, it is typically not considered a dynamic
model and, thus, could not be used to represent the behavior of a
mental disorder target system as it evolves over time. In principle
the GGM could be augmented by a dynamic rule similar to one
commonly used with the Ising model (i.e., “Glauber dynamics™;
see below). However, in that case, the GGM would become a
model similar to, but more limited than, the VAR model described
above (e.g., it would be limited to symmetric relationships).
Accordingly, the GGM is similarly unable to represent key fea-
tures we expect to observe in a mental disorder target system.

The final model we will consider is the Ising model. The Ising
model again represents pairwise conditional dependence relations
between variables (Ising, 1925); however, it is a model for multi-
variate binary data. Although the original Ising model does not
model dependencies over time, it can be turned into a dynamic
model by augmenting it with Glauber dynamics (Glauber, 1963).*
Like the VAR model, the Ising model is able to represent feedback
loops. Moreover, due to its nonlinear form it is able to exhibit mul-
tiple stable states (and the behavior that accompanies such stable
states, such as hysteresis and sudden shifts in levels of symptom
activation, see e.g., Cramer et al., 2016; Dalege et al., 2016; Hasl-
beck et al., 2020; Lunansky et al., 2020). It is perhaps not surpris-
ing then, that the Ising model is used as a theoretical model across
many sciences (Stutz & Williams, 1999), and to our knowledge, is
the only of the three data models examined here that has been

3 This dynamics works as follows: After specifying an initial value for
each variable, it randomly picks one variable X; at = 1 and takes a draw
from the distribution of X; conditioned on the values of all other variables.
This value (either O or 1) is set to be the new value of X; and then the same
process is repeated, thereby allowing the model to evolve over time.
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Figure 4
Ability of Popular Network Models to Capture Key Properties of Mental Disorders
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Note. The figure shows whether the five properties of mental disorders discussed above can be represented by
the three most popular network data models, the VAR(1) model, the GGM, and the Ising model with Glauber dy-
namics. Note that there is a check mark at feedback loops for GGMs because one could in principle endow the
GGM with a dynamic similar to the Ising model, which would essentially lead to a restricted VAR model but with
symmetric relations. The asterisk is present because this endowment of dynamics is not typically done in practice.

used as a formal theory of a mental disorder target system (Cramer
et al., 2016). Unfortunately, the Ising model falls short in its ability
to represent the remaining characteristics likely to be present in
mental disorders. The relationships in the Ising models are exclu-
sively symmetric; with the standard Glauber dynamics, there is
only a single time scale; and the Ising model includes exclusively
pairwise relationships, precluding any representation of higher-
order interactions.

Data Models as Formal Theories of Mental Disorders?

We showed that the VAR, GGM, and Ising models are unable
to represent most key properties we would expect in the target
systems giving rise to mental disorders, and therefore cannot
serve as formal theories for those disorders. In the statistical in-
ference literature the problem of not being able to represent the
target system would be seen as a problem of model misspecifica-
tion. In the present case, this would mean that the data models
are misspecified with respect to the target system (i.e., the data
generating system).

Of course, more complex models would be able to produce
more of the characteristics likely to be present in mental disorders.
For example, one could extend the VAR model with higher-order
interactions (e.g., X, XY, — X,.;) or latent state variables
(Hamaker et al., 2010; Tong & Lim, 1980), thereby allowing it to
represent multiple stable states. However, estimating data models
is subject to fundamental constraints. More complex models
require more data which are often unavailable in psychiatric
research. For example, around 90 observations (about 2.5 weeks
of a typical Experience Sampling Method [ESM] study) are
needed for a VAR model to outperform the much simpler AR

model (Dablander et al., 2019). Models more complex than the
VAR model would require even more data to be estimated
reliably.

Another constraint likely to be present in many psychological
studies is the sampling frequency (e.g., measurement every 2 hr),
which may be too low to capture the structure of the target system
of interest (Haslbeck & Ryan, 2021). In this situation, a data
model still contains some information about the target system, but
cannot capture the structure of the target system to the extent that
it can serve as a formal theory. Even where large amounts of high
frequency data are available, efforts to estimate more complex
models may be constrained by the simple fact that it is often
unclear how such models can be estimated. For example, one
could extend the Ising model with a second time scale (e.g.,
Lunansky et al., 2020), but it would be unclear how to estimate
such a model from data. Finally, even where more complex mod-
els can be estimated, those models are often uninterpretable. For
example, nonparametric models (e.g., splines; Friedman et al.,
2001, p. 139), which can capture extremely complex behavior,
typically consist of thousands of parameters, none of which can be
interpreted individually. Accordingly, it is unlikely that any data
model estimated from the type of data typically available in psy-
chiatric research will be both interpretable and capable of captur-
ing the characteristics of psychopathology in such a way that
would allow it to serve as a formal theory of a mental disorder.

Route 2: Using Data Models to Infer Formal Theories

An alternative route from data models to formal theories is to use
data models to draw inferences about a target system, inferences
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that we can use to construct a formal theory. There is good reason
to think that this approach could work. Because the data are gener-
ated by the target system, and data models summarize these data,
the parameters of any data model certainly somehow reflect charac-
teristics of the target system. This means that it should be possible,
in principle, to infer something about the target system and its char-
acteristics from data and data models. Although we have seen
already that the GGM, Ising and VAR models cannot directly repro-
duce the key characteristics of the target system, their parameters
could potentially still yield insights into the structure or patterns of
relationships between components. In line with this intuition, it has
frequently been suggested that the GGM, the Ising model, and the
VAR models can serve as “hypothesis-generating tools” for the
causal structure of the target system (e.g., Borsboom & Cramer,
2013; Epskamp et al., 2018; Epskamp et al., 2018; Fried & Cramer,
2017; Jones et al., 2018; van Rooijen et al., 2017).

Although this approach seems intuitive, in practice it is unclear
how exactly this inference from data model to target system
should work. For example, if we observe a strong negative linear
cross-lagged effect of X, on Y ,, | in a VAR model, what does that
imply for the causal relationship between the corresponding com-
ponents in the target system? A precise answer to this question
would require a rule that connects parameters in particular data
models to the structure of the target system. For some simple sys-
tems, such a rule is available, and this type of inference can
broadly be characterized as a causal discovery problem (Spirtes et
al., 2000; Peters et al., 2017). For example, if the target system
can be represented as a directed acyclic graph (DAG), then under
certain circumstances its structure can be discovered from condi-
tional (in)dependence relations between its components: Condi-
tional independence implies causal independence, and conditional
dependence implies either direct causal dependence or a common
effect (Pearl, 2009; Ryan et al., 2019). However, this kind of pre-
cise deduction is not possible for the types of nonlinear dynamic
systems we expect in a psychiatric context (although Mooij et al.,
2013 and Forré & Mooij, 2018 have established some links in this
regard). In these contexts, any inference from data model to target
system must rely on some simplified heuristic(s) in an attempt to
approximate the link between the two. Critically, however, the
extent to which such heuristics are informative remains unclear.

In this subsection we evaluate whether the three data models
introduced above can be used to make inferences about mental dis-
order target systems. To do this, we treat the panic model dis-
cussed in above as the data-generating target system and compare
the causal structure inferred from the data models to the true
causal structure. To yield these inferences we use a very simple
and intuitive set of heuristics: (a) if two variables are conditionally
dependent in the data model, we will infer that the corresponding
components in the target system are directly causally dependent;
(b) if there is a positive linear relationship, we will infer that the
causal relation between the corresponding components is positive
(i.e., reinforcing); (c) if there is a negative linear relationship, we
will infer that the causal relationship among components is nega-
tive (i.e., suppressing).

Inferring the Panic System From Network Data Models

To be able to evaluate the success of the simple heuristics
described above, we must first represent the structure of the panic

model (introduced earlier) in the form of a square matrix, that is,
in the same form as the parameters of the VAR, GGM, and Ising
models. Because the relationships between components are for-
malized through differential equations, a natural choice is to repre-
sent the panic model as a network of moment-to-moment
dependencies, drawing an arrow X — Y if the rate of change of Y
is directly dependent on the value of X (known as a local depend-
ence graph; Didelez, 2007; Ryan & Hamaker, 2021). Figure 5a
displays these moment-to-moment dependencies. Note that this
structure cannot capture many aspects of the true model, such as
the presence of two time scales or the moderating effect of arousal
schema (AS; see above for details). It is, thus, already clear that
the models cannot recover the exact causal structure of the panic
model. Nonetheless, we can still investigate whether applying the
simple heuristics to these three data models allows us to infer this
less detailed pattern of direct causal dependencies.

To evaluate how well these heuristics work, we compare this
true causal structure to the causal structure inferred based on the
three data models. To obtain the three data models, we first gener-
ate data from the target system (see Appendix A). Specifically, we
use 4 weeks of minute-to-minute time-series data for 1,000 indi-
viduals. These individuals differ in their initial value of AS, with
the distribution chosen so that the proportion of individuals for
whom a panic attack is possible was equivalent to the lifetime his-
tory prevalence of panic attacks in the general population (R. R.
Freedman et al., 1985). For the VAR model analysis, we create a
single-subject experience-sampling-type dataset by choosing the
individual who experiences the most (16) panic attacks in the 4-
week period. To emulate ESM measurements for use with this
model, we divide the 4-week period into 90-min intervals, taking
the average of each component in that interval, yielding 448 meas-
urements. For the GGM analysis, we emulate continuous cross-
sectional measurements by taking the mean of each component for
each individual over the four weeks. For the Ising model analysis,
we emulate cross-sectional binary measurements by taking a me-
dian split of those same variables. The resulting VAR, GGM, and
Ising model networks are displayed in Figure 5, panels b, ¢, and d,
respectively.*

We will focus our evaluation on two important causal depend-
encies in the target system: the positive (i.e., reinforcing) moment-
to-moment feedback loop between perceived threat (PT) and
arousal, and the positive effect of AS (i.e., beliefs that arousal-
related bodily sensations are dangerous, AS) on avoidance (i.e.,
efforts to avoid situations or stimuli that may elicit panic attacks).
In the VAR model (panel b in Figure 5) we see a lagged positive
relationship of arousal to PT, a strong negative lagged relationship
from PT to arousal, and a weak positive effect of AS on avoidance.
Applying the heuristics, we would infer a reinforcing relationship
from arousal to PT, a suppressing relationship from PT to arousal,
and a reinforcing effect of AS on avoidance. In the GGM (panel ¢
in Figure 5) we see a positive conditional dependency between
arousal and PT, but we also see a weak negative dependency
between AS and avoidance. Applying the heuristics to the GGM,
we would infer a reinforcing relationship between arousal and PT,
and a suppressing relationship between AS and avoidance. Finally,

*Note that in the Ising model the parameter estimates are somewhat
unstable due to near-deterministic relationships between some binarized
variables.
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Figure 5

Comparing Network Models With True Local Dependence Network
(a) True Local Dependence

(b) VAR Model

(c) Gaussian Graphical Model

(d) Ising Model

Note.

in the Ising model (panel d in Figure 5), we see a strong positive
dependency between AS and avoidance, and a very weak positive
relationship between PT and arousal. This leads us to infer two
reinforcing relationships, between arousal and PT, and AS and
avoidance.

For the VAR model, the heuristics yield one correct and one
incorrect inference. For the GGM, we make exactly the opposite
inferences, with again one correct and one incorrect. The Ising
model yields two correct inferences. However, inspecting the rest
of the Ising model edges we can see a variety of incorrect infer-
ences about other relationships, with independent components in
the target system connected by strong edges in the Ising model, and
the valences of various true dependencies flipped. At best, we can
say that in each of the three network models, some dependencies do
reflect the presence and/or direction of direct causal relationships,
and some do not. Unfortunately, it is not possible to distinguish
which inferences are trustworthy and which are not without know-
ing the target system, and in any real research context, the target
system will be unknown. Consequently, these data models and sim-
ple heuristics cannot be used to reliably draw inferences about the
target system.

Panel a shows the true model in terms of local dependencies between components (AS = arousal schema; PT = perceived
threat); Panel b shows the VAR model estimated from ESM data sampled from the true model (VAR = vector autoregressive);
Panel ¢ shows the the Gaussian graphical model (GGM) estimated from the cross-sectional data of 1,000 individuals, generated
from the true model; Panel d shows the Ising model estimated on the same data after being binarized with a median split. Solid
edges indicate positive relationships, dotted indicate negative relationships. For Panels b to d, the widths of edges is proportional
to the absolute value of the corresponding parameter. Note that in Panel b we do not depict the estimated auto-regressive parame-
ters as the primary interest is in inferring relationships between variables.

The Mapping Between Data Model and Target System

Importantly, our inability to draw accurate inferences from these
data models is not a shortcoming of the data models themselves.
Each data model correctly captures some form of statistical de-
pendency between the components in a particular domain (e.g.,
lagged 90-min windows). The scenario we emulated in this section
is highly idealized in that we have directly and accurately
observed all components of the target system—measurements are
taken without error, and there is no potential for statistical depend-
encies to be produced by unobserved confounding variables. This
means that the statistical dependencies in the data models can only
be produced by causal dependencies in the target system. Thus, we
know that there is some mapping from the causal dependencies in
the target system to statistical dependencies in the data model. The
fundamental barrier to inference is that the form of this mapping is
unknown and considerably more complex than the simple heuris-
tics we have used to draw inferences here. For example, consider
the relationships between PT and arousal. The VAR model (panel
b in Figure 5b), identifies a negative lagged relationship from PT
to arousal in the data generated by the target system. Yet in the
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target system, this effect is positive. This “discrepancy” occurs
because of a very specific dynamic between these components: Af-
ter a panic attack (i.e., a brief surge of PT and arousal) there is a
“recovery” period in which arousal dips below its mean level for
a period of time. As a result, when we average observations over a
90-min window, a high average level of PT is followed by a low
average level of arousal whenever a panic attack occurs. That
same property of the system produces the observed findings for
the GGM and Ising model through yet another mapping (for
details, see Appendix B).

As this example illustrates, the mapping between target system
and data model is intricate, and it is unlikely that any simple heuris-
tics can be used successfully to work backward from the data model
to the exact relationships in the target system. We can expect this
problem to arise whenever we use relatively simple statistical mod-
els to directly infer characteristics or properties of a complex system
(cf. the problem of underdetermination or indistinguishability; Eber-
hardt, 2013; Spirtes, 2010). Indeed, the same problem arises even
for simpler dynamical systems when analyzed with more advanced
statistical methods (e.g., Haslbeck & Ryan, 2021).

Of course, in principle, it must be possible to make valid infer-
ences from data and data models to some properties of a target sys-
tem using a more principled notion of how one maps to the other.
For example, under a variety of assumptions, it has been shown
that certain conditional dependency relationships can potentially
be used to infer patterns of local causal dependencies in certain
types of dynamic system (Bongers & Mooij, 2018; Forré & Mooij,
2018; Mooij et al., 2013). However, the applicability of these
methods to the type of target system we expect to give rise to psy-
chopathology is as yet unclear and even under the strict assump-
tions under which they have been examined, these methods still do
not recover the full structure of the target system. Given the con-
siderations reviewed here, the intricate mapping between target
system and data model likely precludes reliable direct inferences
about the kinds of target systems we are likely to see in mental
health research. Accordingly, we cannot rely on this kind of infer-
ence to build formal theories. An alternative approach is needed.

Route 3: Using Data Models to Develop Formal Theories

In the previous section, we saw that the mapping between target
system and data model is intricate and would be nearly impossible to
discern when the target system is unknown. However, we also saw
that when the target system is known, we can determine exactly
which data models the target system will produce. Indeed, this is pre-
cisely what we did when we simulated data and fit data models to it
in the previous section. In this section we consider a third route to
formal theories, which makes use of this ability to determine which
data models are implied by a given target system (or formal theory).

This third route works as follows. First and foremost, we
must propose some initial formal theory which we take as a rep-
resentation of the target system. The quality or accuracy of this
theory may be good or bad, but, crucially, the theory must be
formalized in such a way as to yield unambiguous predictions.
Second, we can use this initial theory to deduce a theory-
implied data model. This can be done by simulating data from
the formal theory and fitting the data model of interest. Third,
by comparing implied data models with their empirical counter-
parts, we can learn about where the theory falls short and adapt

the formal theory to be more in line with empirical data. This
approach is represented in schematic form in the right-hand
panel of Figure 3. It can be seen as a form of inference. Not the
direct deductive inference focused on in the previous subsec-
tion, but rather abductive inference: inference to the best expla-
nation (Haig, 2005). We infer the best explanation for any
discrepancies between empirical and theory-implied data models,
and use those inferences to inform subsequent theory development.

Obtaining Theory-Implied and Empirical Data Models

In this section, we will treat the panic model introduced in ear-
lier as our initial formal theory, which aims to represent the tar-
get system that gives rise to panic disorder (Figure 6, bottom
row). The panic model can be used to simulate data and, in turn,
to derive predictions made by the theory in the form of theory-
implied data models (left-hand column of Figure 6). Although
many data models can (and should) be used to compare theories
and empirical data, here we will examine the implied cross-sec-
tional Ising model of the three core panic disorder symptoms: (a)
recurrent panic attacks (PA); (b) persistent concern (PC) follow-
ing a panic attack; and (c) avoidance (Av) behavior following a
panic attack (American Psychiatric Association, 2013). If our
formal theory of panic disorder is an accurate representation of
the target system that gives rise to panic disorder, the implied
Ising model derived from this theory should be in agreement
with a corresponding Ising model estimated from empirical data.
Accordingly, any discrepancies between these models call for—
and can inform—further development of the theory.

Notably, obtaining an implied data model requires not only a
formal theory from which we can simulate data, but also a formal-
ized process by which variables are “measured” from those data.
The panic model generates intraindividual time-series data for
multiple individuals (as described in Appendix A). We therefore
need to define how cross-sectional symptom variables can be
extracted from those time-series. Here, we specified that recurrent
panic attacks (PA = 1) are present for an individual in our simu-
lated data if there are more than three panic attacks in the one
month observation period. PC was determined using the average
levels of jointly experienced arousal and perceived threat (i.e.,
anxiety) outside the context of a panic attack. If an individual had
a panic attack, and their average anxiety following a panic attack
exceeds a threshold determined by “healthy” simulations (i.e.,
those without panic attacks), they are classified as having PC (PC =
1). We similarly defined Av as being present if an individual has a
panic attack, and their average levels of avoidance behavior follow-
ing that attack were higher than we would expect to see in the
healthy sample. A more detailed account of how we generated these
data can be found in Appendix C. This simulated cross-sectional
data was then used to estimate the theory-implied Ising model (top
left-hand corner, Figure 6).°

We obtained the corresponding empirical Ising model (right-
hand column of Figure 6) using the publicly available Collabora-
tive Psychiatric Epidemiology Surveys (CPES) 2001-2003 (Ale-
gria et al., 2007). The CPES is a nationally representative survey
of mental disorders and correlates in the United States, with a total

5 Here again the Ising model estimates are somewhat unstable due to
near-deterministic relationships between the variables.
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Figure 6

Hllustration of the Third Route From Data Models to Formal Theories
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Note. We take the Panic model discussed in previously as our formal theory, representing the unknown target
system that gives rise to panic disorder. To obtain an implied data model from this theory, we first formalize
how the components of the theory produce the data of interest, emulating the measurement process. With this
in place, we can simulate data from the model in the form of cross-sectional binary symptom variables. We
obtain the theory-implied Ising model by estimating it from these simulated data (top-left corner). To estimate
the empirical Ising model (top-right corner) we make use of empirical measurements of binary symptom varia-
bles from the CPES dataset. PA = recurrent panic attacks; PC = persistent concern; Av = avoidance; CPES =

Collaborative Psychiatric Epidemiology Surveys.

sample size of over twenty thousand participants (of which n =
11,367 are used in the current analysis; for details see Appendix
C). The CPES combines more than 140 items relating to panic
attacks and panic disorder, with a diagnostic manual describing
how these items can be recoded into binary symptom variables
reflecting recurrent PA, PC, and Av. Recurrent PA are present if
the participant reported more than three lifetime panic attacks. PC
is present if, following an attack, the participant experienced a
month or more of persistent concern or worry. Avoidance is pres-
ent if the participant reports either a month of avoidance behavior
following an attack, or a general avoidance of activating situations

in the past year. Note that these definitions correspond closely to
the formalized measurement assumptions we made while generat-
ing our theory-implied data model.

Theory Development: Comparing Model-Implied and
Empirical Data Models

As seen in Figure 6, there is a similar pattern of conditional
dependencies in the implied and empirical data models. In both,
all pairwise dependencies are positive, and all thresholds are nega-
tive. There is also a similar ordering of conditional dependencies
in terms of their magnitude. Within each model, the conditional
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Figure 7

Comparing Pairwise Frequencies of Symptoms in Empirical and Simulated Data
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Note. Contingency tables showing percentages for each pair of symptom variables (one per column) for the

empirical data (top row) and simulated data (bottom row). The CPES contingency tables are based on ncpgs =
11,367 observations. The simulated dataset contains ngy, = 1,000 observations. PA = recurrent panic attacks;

PC = persistent concern; Av = avoidance.

relationships of recurrent PA with Av and recurrent PA with PC
are of the same order of magnitude, and the conditional relation-
ship between Av and PC is an order of magnitude greater. How-
ever, we also see some differences between the models. First, the
absolute value of pairwise dependencies and thresholds are much
greater in the implied Ising model (Figure 6a) than the empirical
Ising model (Figure 6b). Second, we see that the relationships in
the implied model are perfectly symmetric, with exactly the same
thresholds for Av and PC, and precisely the same weights relating
recurrent PA to both.

The bivariate contingency tables in Figure 7 provide further in-
formation about these intersymptom relationships. In both the
implied and empirical data models only a small proportion of indi-
viduals experience recurrent PA (empirical 3.72%, simulated
4.6%). In the simulated dataset, the symptom relationships are
almost deterministic: If one symptom is present, so too are all
others, and vice versa for the absence of symptoms (apart from
seven individuals who experience at least one, but less than three
panic attacks in the time window). This is because there is a deter-
ministic relationship between the components underlying these
symptoms in the panic model: All participants who experience one
panic attack have PC and Av behavior after those attacks. In con-
trast, there are nondeterministic relationships in the empirical data.
For example, it is actually more common to have recurrent PA
without PC than with PC (Column a of Figure 7). Similarly, more
individuals experience Av without PC, than with PC (Column c of
Figure 7). Conversely, there are no individuals who experience PC
but not Av.

Having observed these differences between the theory-implied
and empirical data models, our task is to consider the best

explanation for the discrepancies. This explanation could rest at
any step in the process from formal theory to the implied data
model or from the target system to the empirical data model (i.e.,
any of the paths illustrated in Figure 6). It could be the case that
any discrepancies we have observed here are due to inaccuracies
in how we emulated the measurement process.® For example, per-
haps PC and Av co-occur equally, but the former suffers from a
greater degree of recall bias than the latter (for an example of dif-
ferential symptom recall bias in depressed patients, see Ben-Zeev
& Young, 2010). The discrepancies could have arisen due to the
somewhat different time scales at which the simulated and empiri-
cal symptoms are defined. The simulated symptoms are defined
over a 1-month period whereas the CPES items are defined over
lifetime prevalence. Due to the deterministic nature of the panic
model, we regard a 1-month period to be a good approximation
for lifetime experience of panic symptoms in this case. Nonethe-
less, it is a discrepancy in measurement that could lead to discrep-
ancies between the implied and empirical data models. It could
also be that the discrepancy is due to estimation issues. However,
due to the large sample sizes and simple models used, we suspect
it is unlikely that sampling variance is a problem in this instance.
We consider the most likely explanation for the observed dis-
crepancies to lie with the theory itself, thereby providing an oppor-
tunity to consider how the theory might be further developed to
bring it in line with empirical data. For example, the implied Ising

6 Inaccurate conceptualizations of how measurements represent the
target system will be problematic for any approach to theory development
or indeed any scientific endeavor, as evidenced by the growing attention on
measurement in the psychopathology literature (e.g., Flake & Fried, 2019)
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model overestimates the strength of intersymptom relationships
relative to the empirical Ising model. This can largely be explained
by the deterministic causal effects in the theory. In the simulated
data, everybody who experiences Recurrent PA also develops PC
and, in turn, Av. As seen in Figure 7, this is inconsistent with em-
pirical data. To improve the model, we must include some mecha-
nism by which individuals can experience a panic attack without
developing the remaining symptoms of panic disorder. Where is
such a mechanism most appropriate? In the empirical data, nearly
all those with PC also exhibit Av. In contrast, only a few of those
with recurrent PA also exhibit PC. Accordingly, the discrepancy
seems most likely to arise from the effect of recurrent panic
attacks on PC. Incorporating a mechanism that leads some to resist
developing persistent concern following panic attacks (e.g., high
perceived ability to cope with the effects of a panic attack) would
allow the theory to better account for both the observation that
some individuals experience recurrent panic attacks without devel-
oping the full panic disorder syndrome and the observation that
those who do develop PC tend to develop the full syndrome.

As this example illustrates, discrepancies between the theory-
implied and empirical data models can provide insights for how to
further develop a theory. We have focused on just one set of dis-
crepancies between our theory-implied and empirical data models.
More insights may be gained by focusing on others and these
insights can work together to triangulate on the most appropriate
set of revisions. Further insights can almost certainly be gained by
considering additional data models and different types of data. For
example, experimental data or time series data on the relation
between arousal and PT may allow us to refine the specification of
the feedback between those two variables. In general this route
offers a great deal of flexibility in theory development. Although
the theory is likely to be complex, dynamic, and nonlinear, the
form of the data models used to learn about that theory need not
be. Instead, by starting with an initial theory, the researcher can
use any data about the phenomena of interest to further develop
that theory.

Abductive Formal Theory Construction

In previous section, we illustrated an approach to using empiri-
cal data to develop an existing formal theory. However, our
description of this approach is not, by itself, a comprehensive
approach to theory construction, because it does not address how
the formal theory was generated nor how it should ultimately be
tested. In this section, we propose a three-stage framework for for-
mal theory construction built around using empirical data and data
models for formal theory development (see Figure 8).

This framework uses the theory construction methodology pro-
posed by Borsboom et al. (2020) as a foundation and seeks to
extend that work by providing more concrete guidance for how to
proceed with the generation, development, and testing of theories,
with a focus on how data models are used at each of these stages
of theory construction. In the theory generation stage, we use data
models to establish the phenomenon to be explained, generate an
initial verbal theory, and formalize that theory. In the theory devel-
opment stage, the theory is revised and improved by repeatedly
comparing theory-implied data models with data models from em-
pirical data. Finally, in the theory testing stage, the theory is sub-
jected to strong tests within a hypothetico-deductive framework,

comparing precise theory-driven predictions and empirical data
models with the aim of corroborating or refuting the theory. The
approach to theory construction proposed here places considerable
emphasis on the theory’s ability to explain phenomena and empha-
sizes the importance of abductive inference in theory construction
(Haig, 2005). We therefore refer to it as the abductive formal
theory construction (AFTC) framework.

Stage 1: Generating Theory
Establish the Phenomena

The goal of a formal theory is to explain phenomena. Accord-
ingly, the first step of theory construction is to establish phenom-
ena to be explained. Establishing phenomena is a core aim of
science and a full treatment of how best to achieve this aim is
beyond the scope of this paper (for a possible way to organize this
process see Haig, 2005). However, it is worth highlighting that
establishing robust phenomena is a prerequisite to theory construc-
tion. The most difficult phenomenon to explain are the ones that
do not exist (Lykken, 1991), so researchers must take great care at
this stage to ensure that the phenomenon for which they are trying
to account are robust. We suspect that the most appropriate phe-
nomena for initial theory development will often include things
that researchers would not even think to subject to empirical anal-
ysis, taking them for granted as features of the real world. For
example, in the case of panic disorder, the core phenomena to be
explained are simply the observations that (a) some people experi-
ence panic attacks and (b) recurrent attacks often co-occur with
persistent worry or concern about those attacks and avoidance of
situations where such attacks may occur. These phenomena are so
robust that they are typically not the focus of empirical research,
yet they are the most important phenomena to be accounted for by
a theory of panic disorder.

Generate an Initial Verbal Theory

Once the phenomena to be explained have been established,
how do we go about generating an initial theory to explain them?
A brief survey of well-known scientific theories reveals that this
initial step into theory is often unstructured and highly creative.
For example, in the 19th century August Kekule dreamt of a snake
seizing its own tail, leading him to the generate the theory of the
benzene ring, a major breakthrough in chemistry (Read, 1995). In
the early 20th century, Alfred Wegener noticed that the coastlines
of continents fit together similar to puzzle pieces, and conse-
quently developed the theory of continental drift (Wegener, 1966),
which formed the basis for the modern theory of plate tectonics
(Mauger et al., 1996). In the late 20th century, Howard Gardner
explained that he developed his theory of multiple intelligences in
the 1980s using “subjective factor analysis” (Walters & Gardner,
1986, p. 176). Although more codified approaches to theory gener-
ation exist (e.g., grounded theory; Strauss & Corbin, 1994), we are
unaware of any evidence to suggest that any one approach to gen-
erating the seed of an initial theory is superior to any other.

Nonetheless, our review of theory in the earlier part of the paper
(see “Theories, Phenomena, and Target Systems”), provides guid-
ance for theory generation in at least two ways. The first is rooted
in what is perhaps theory’s most characteristic feature: its ability
to explain phenomena. Initial efforts to generate a theory should
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Figure 8
The Abductive Formal Theory Construction Framework (AFTC)

Stage of Theory Use of

Construction Data Models
_CE Generate Abduction Establish
B4 Theory Phenomenon
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Note. Flowchart depicting the process of developing a formal theory with the abductive formal
theory construction framework (AFTC). In the theory generation stage we first establish the phe-
nomenon and then generate an initial verbal theory which is subsequently formalized . In the
second stage the theory is developed by testing whether it is consistent with existing empirical
findings that are not part of the core phenomenon. If the formal theory is not consistent with
some findings, it is adapted accordingly. If these adaptations lead to a “degenerative” theory
(Meehl, 1990), we return to the first stage; otherwise we continue to the final stage, in which we
test the formal theory using risky predictions (Section 4.3). If many tests are successful, we ten-
tatively accept the theory. If not, the theory must either be adapted (stage two) or a new theory
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must be generated (stage one).

begin with abductive inference, asking the simple question: What
is the best explanation for the phenomena of interest (and, in turn,
the data models used to establish those phenomena). The second is
rooted in the observation that theories aim to explain phenomena
by representing a target system. Accordingly, to generate an initial
theory it will likely be helpful to specify the components thought
to compose the target system. This process entails dividing the do-
main of interest into its constituent components (i.e., “partition-
ing”) and selecting those components one thinks must be included
in the theory (i.e., “abstraction”; cf. Elliott-Graves, 2014). For
researchers adopting a “network perspective” (Borsboom, 2017),
the target system is typically presumed to comprise cognitive,
emotional, behavioral, or physiological components, especially
those identified in diagnostic criteria for mental disorders. Having
identified the relevant components we next specify the posited
relations among them. Within the domain of the network approach,
this second step will typically entail specifying causal relations
among symptoms or momentary experiences (e.g., thoughts, emo-
tions, and behavior). Having specified the theory components and

the posited relationships among them, the researcher has generated
an initial theory posited to account for the phenomena of interest.

Notably, in mental health research, we do not even necessarily
need to rely on creative insight about the components and relations
among them in order to generate an initial theory. There are already
a plethora of verbal theories about mental disorders. If the initial
verbal theory is well supported and specific, it will lend itself well
to formalization and subsequent theory development and even poor
verbal theories can be a useful starting point to developing a suc-
cessful formal theory (Wimsatt, 1987; Smaldino, 2017).

Formalize the Initial Theory

Once a verbal theory has been specified, the next step is to for-
malize it. To do so, we first need to choose a formal framework.
Dynamical systems are often modeled using differential equations,
which describe how variables change over time (e.g., Strogatz,
2014). The panic model we have used as an example throughout
this article, uses this formal framework. Another common frame-
work is agent-based modeling (ABM), in which an autonomous
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agent interacts with its environment, which often includes addi-
tional agents (e.g., Grimm & Railsback, 2005). Both frameworks
can be implemented in essentially any computer programming lan-
guage and both are likely to be relevant to psychiatric and psycho-
logical research as a whole. The choice of a formalization
framework will largely depend on the context (the types of compo-
nents and types of relations we wish to describe) as well as the
level of abstraction or granularity desired by the researcher. For
instance, one reason differential equations are attractive is because
they may be used to specify component relations on an infinitesi-
mal time scale. In principle, by aggregating, these models can be
used to describe behavior at any longer time scale. However, mod-
eling phenomena directly at some longer time scale of principle in-
terest (e.g., modeling symptom dynamics on a month-to-month
rather than moment-to-moment level) may be both simpler to
achieve and serve equally well in attaining a theoretical explana-
tion of phenomena.

Having chosen a formal framework, the next step is to specify
the relations between each component in the language of that
framework. This process of formalization is an exercise in being
specific. Mathematics and computational programming languages
require theorists to specify the exact nature of the relationship
between variables. Requiring this level of specificity is one
advantage of computational modeling, as it has the effect of imme-
diately clarifying what remains unknown about the target system
of interest, thereby guiding future research. However, this also
means that theorists will often be in the position of needing to
explicate relationships when the precise nature of those relation-
ships is uncertain. We think that, even in the face of this uncer-
tainty, it is better to specify an exact relationship and be wrong
than to leave the relationship ambiguously defined (as it often is in
verbal theories). Nonetheless, the more theorists can draw on em-
pirical research and other resources when specifying their theory,
the firmer the foundation for subsequent theory development.
There are several potential sources of information that can guide
the formalization process.

First, empirical research can inform specification of components
and the relations among them. For example, one could use the
finding that sleep quality predicts next-day affect, but daytime
affect does not predict next-night sleep (de Wild-Hartmann et al.,
2013) to constrain the set of plausible relationships between those
two components in the formal theory. There could also be empiri-
cal data on the rate of change of components, for example, Siegle
et al. (2002) and Siegle et al. (2003) have shown that depressed
individuals exhibit longer sustained physiological reactions to neg-
ative stimuli than healthy individuals, a finding which is echoed in
self-report measures of negative affect (Houben et al., 2015).
These findings suggest that the rate of decay of negative affect
may be smaller in those with depression relative to those without.

Second, we can derive reasonable scales for components and
relationships between components from basic psychological sci-
ence. For example, classical results from psychophysics show that
increasing the intensity of stimuli in almost all cases leads to a
nonlinear response in perception (e.g., Fechner et al., 1966): When
increasing the volume of music to a very high level, individuals
cannot hear an additional increase. Similarly, formal theories of
mental disorders may involve some forms of learning. To con-
strain the relations between components that constitute learning,

one can leverage a wealth of research on basic learning, for exam-
ple on classic or operant conditioning (Henton & Iversen, 2012).

Third, in many cases we can use definitions, basic logic, or
common sense to choose formalizations. For example, by defini-
tion emotions should change at a time scale of minutes (Houben et
al., 2015), while mood should only change at a time scale of hours
or days (Larsen, 2000). And we can choose scales of some compo-
nents using common sense, for example one cannot sleep less than
zero or more than 24 hours per day.

Fourth, we could use an existing formal model of another target
system, which we expect to have a similar structure as the target
system giving rise to the phenomenon of interest. This approach is
called “analogical modeling”. For example, Cramer et al. (2016)
formulated a model for interactions between symptoms of major
depression using the Ising model, which was originally formulated
to model magnetism on an atomic level (Ising, 1925). Similarly,
Fukano and Gunji (2012) formulated a model for interactions
among core components of panic attacks using a Lotka-Volterra
model originally formulated to represent predator-prey relation-
ships (Brauer et al., 2012). However, in using this analogical
approach, it will be critical to use models capable of representing
the kinds of properties expected in the target system of interest.

Fifth, there are methods by which we can potentially estimate
the parameters of a formal theory from empirical data.” These
approaches require considerable development of the formal theory
(e.g., the form of a differential equation), suitable data (typically
intensive longitudinal data), and a clear measurement model relat-
ing observed variables to theory components. Accordingly, this
approach already requires considerable progress in generating a
formal theory and may be limited by practical considerations.
Nonetheless, if successfully carried out, the direct estimation of
parameter values would substantially strengthen the theory.

Sixth, one can build on models from cognitive and mathematical
psychology. Mental disorders can often be viewed as dysfunctional
states of otherwise functional systems of basic psychological proc-
esses, such as perception, learning, and memory; thereby allowing
mental health researchers to draw on extant models of these proc-
esses. For example, Eldar et al. (2016) conceptualize mood as the
difference between expectations and outcomes and show in a rein-
forcement learning model that it is adaptive in environments in
which rewards are correlated. Using this model of functional (or
adaptive) mood, they identify several meaningful ways one can
change the model to produce prolonged depressed mood. Another
example is the computational model for oppressive-compulsive dis-
order (OCD) by Fradkin et al. (2020), who explain various OCD
phenomena by dysfunctional information processing within the
Bayesian brain framework (Knill & Pouget, 2004).

Evaluating the Initial Theory

The aim of the theory generation stage is to produce a formal
theory that is able to explain a phenomenon or set of core

7 For example, if the theory is formalized as a system of differential
equations, the parameters of such equations can in principle be estimated
from time-series data using, amongst others, Kalman filter techniques and
state-space approaches (e.g., Durbin & Koopman, 2012; Einicke, 2019;
Kulikov & Kulikova, 2014). For implementations of these estimation
methods see Ou et al. (2019), Carpenter et al. (2017), and King et al.
(2015).
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phenomena. As we have emphasized throughout this paper, formal
theories precisely determine the behavior implied by the theory.
Accordingly, explanation in this context means that the theory has
demonstrated its ability to produce the behavior of interest (for a
more detailed discussion of how formal theories support explana-
tion, see Robinaugh et al., 2021). For example, a theory of panic
attacks must be able to produce sudden surges of arousal and per-
ceived threat; a theory of depression must be able to produce sus-
tained periods of low mood; and a theory of borderline personality
disorder must be able to produce affective instability. We would
note that there are very few theories in psychiatry that have
reached this stage of not merely positing, but demonstrating, that
the theory can explain the phenomena of interest. Accordingly,
completing this stage of theory construction would constitute a
significant advance in theories of psychopathology. Once a theory
has reached this stage, it is ready for the next stage of theory
construction.

Stage 2: Developing Theory

The formal theory produced in the first stage of theory construc-
tion will have demonstrated its ability to explain the core phenom-
ena of interest. However, the fact that the formal theory provides
some explanation does not mean it is the best explanation. In other
words, demonstrating an ability to explain the phenomenon of in-
terest is a critical first step, but does not guarantee that the formal
theory is the best representation of the target system. To move to-
ward such a theory, we must increase both the explanatory preci-
sion and the explanatory breadth of the theory. We will use the
term explanatory precision to refer to the specificity of the phe-
nomena for which the theory can account. Whereas researchers in
the theory generation stage will typically focus on explaining
broad qualitative phenomena, in the development stage researchers
will benefit from going further to evaluate whether the formal
theory can account for more precise quantitative features of those
phenomena. For example, beyond reproducing the broad qualita-
tive features of a panic attack, a well-developed theory would also
reproduce the typical duration of and peak arousal associated with
a panic attack.

Explanatory breadth refers to the number of phenomena the
theory can explain (Thagard, 1978). Whereas in the theory genera-
tion stage, researchers will typically be focused on a narrow set of
phenomena of interest, to further advance the theory it is necessary
to evaluate whether the theory can account for a broader range of
phenomena. These phenomena may exist on different levels of
aggregation and abstraction, and may necessitate the use of alto-
gether different types of data sources. For instance, a well-devel-
oped theory of panic disorder should be able to both approximate
the time evolution of panic attacks within a person as well as indi-
vidual differences in vulnerability to panic disorder and the vary-
ing symptom profiles of panic disorder we observe at a population
level. The more phenomena for which the theory can account, the
greater confidence we can have that the theory is indeed an
adequate representation of the target system.

We propose that efforts to increase explanatory precision and
breadth should be carried out by repeating two steps. First, we
deduce a data model from the formal theory and compare this
theory-implied data model with a corresponding empirical data
model. If the implied data model is in agreement with the

empirical data model, we take this result to expand the theory’s ex-
planatory breadth, explanatory precision, or both. However, if a
discrepancy is observed, we move to a second step. In this step,
we use abductive inference and consider the best explanation for
the observed discrepancy, thereby providing insight into how the
theory can be adapted to better align with empirical data. By
repeating this process with different data models and data sets, the
theory is refined such that it becomes a better representation of the
target system. We elaborate on these steps below.

Compare Theory-Implied and Empirical Data Models

To generate a theory-implied data model, we first deduce what
the theory implies about the behavior of each of the theory’s com-
ponents. The nature of this deduction will depend on the formal-
ism chosen for the theory. In the case of the differential equation
modeling, we can either derive or simulate precisely how each
theory component will evolve over time (e.g., see Figure 2, right
panel). We can then use the simulated data along with a set of for-
malized auxiliary hypotheses regarding measurement to create a
theory-implied dataset. For example, in an earlier part of the cur-
rent paper we used the panic model to simulate how the compo-
nents of the system will evolve over time and used these
simulations to emulate the measurement that occurs in a cross-sec-
tional epidemiological survey. We could use this same process to
instead emulate the measurements likely to be obtained in an expe-
rience sampling study by sampling the time series every 90 min
with precisely defined measurement functions that capture how
those components relate to the self-report assessment of interest.
This process of moving from the simulated values of each theory
component to the theory-implied dataset requires researchers to
specify precisely how we move from a theoretical entity to observed
data. Accordingly, this process has the significant advantage of
making our measurement assumptions explicit, transparent, and
available for careful scrutiny (for more details see Robinaugh
et al., 2021).

Once a theory-implied dataset is produced, we can fit our data
model of choice to the dataset to produce theory-implied data models
that can then be compared to empirical data models generated using
the same statistical analysis. This approach of producing theory-
implied data models is similar to predictive checks in Bayesian anal-
ysis, where data are generated from the fitted model, and checks are
performed on summary statistics of those data (Gelman & Hill,
2006; Gelman et al., 2013). However, one key difference is that in
Bayesian analysis parameters can typically be estimated directly
from data, while the approach presented here is more general and can
be applied in contexts where such direct estimation is not possible.

If the theory-implied data model and the empirical data model are
in agreement, then theory can be said to provide an explanation for
the phenomenon. If that phenomenon is a more specific characteriza-
tion of a previously explained phenomenon, we have improved the
explanatory precision of the theory. If that phenomenon is entirely
new, we have improved the explanatory breadth of the theory. The
more disparate the phenomenon from what has previously been
examined, the greater the boost in our confidence that the theory is
indeed representing the real world target system. If the theory-
implied data model and the empirical data model are not in agree-
ment, we move to the second step of our iterative process and con-
sider whether to adapt the theory.
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Abductive Inference and Theory Adaptation

If a discrepancy between a theory-implied and empirical data
model is observed, the next step is to determine the best explana-
tion for this discrepancy. The first possibility to consider is
whether the discrepancy could have arisen due to the auxiliary
hypotheses embodied in the generation of a theory-implied dataset.
For example, in the comparison depicted in Figure 7, we observed
a discrepancy in the prevalence of persistent concern between our
theoretical model (5.30%) and our empirical model (1.32%). This
discrepancy may have arisen from our assumptions about how
subjects self-reported their level of worry or persistent concern.
Because our measurement assumptions have been formalized, they
are transparent and available for us to scrutinize. In this case, we
may conclude that our measurement assumptions regarding self-
reported PC require revision, thereby better equipping us to make
use of empirical data on this symptom in future research.

If we do not see a plausible explanation for the discrepancy in our
auxiliary hypotheses, we must turn our focus to our theory and use
abductive reasoning to consider the best explanation for the
observed discrepancies. This explanation may lie in the value of pa-
rameters, the functional form of certain relationships or even the
broader structure of the theory (the components and the presence or
absence of relationships between them). We can then use this abduc-
tive inference to make one or several of changes to the theory, pro-
ducing a new adapted formal theory, which better accounts for the
empirical data at hand. For example, consider again the discrepancy
between the theory-implied and empirically observed prevalence of
persistent concern or worry depicted in Figure 7. In our simulated
data from our panic disorder theory, all “subjects” who exhibited Av
also exhibited PC. However, in the empirical data, most individuals
who exhibited Av did not exhibit PC. One explanation for this dis-
crepancy is that we underestimated the success of avoidance as a
strategy for reducing anxiety, thereby failing to account for individu-
als whose avoidance regulates arousal sufficiently well that they do
not exhibit persistent concern or worry. As with our auxiliary
hypotheses, because formalization has made all aspects of the theory
precise and explicit, we can better evaluate what aspects of the
theory may have given rise to the observed discrepancy, thereby pro-
viding clear guidance for how it may be improved. In this case, we
may conclude that it is necessary to revise the parameter that defines
the strength of the effect of avoidance on arousal or incorporate an
effect directly on perceived threat. With a modestly revised theory,
we can now continue the theory development process, comparing
the revised theory-implied data models with additional models
derived from empirical data. By repeating this process across many
data models, the theory can be refined and begin to account for a
broader and more precise set of phenomena.

Considerations for Theory Development

To this point, we have provided a broad sketch of how compari-
sons between theory-implied data models and empirical data mod-
els can be used, not for theory testing, but for theory development.
The core of this approach is simple. Discrepancies between robust
empirical data models and the data models implied by our theory
give us both an opportunity to evaluate what the theory can explain
and an opportunity to learn how the theory can be improved. How-
ever, while the core notion of this approach is simple, the specifics
are difficult. We suspect there is no single recipe for the best

approach to carrying out this stage of theory construction. In the
remainder of this section we discuss a number of outstanding ques-
tions that researchers are likely to confront when carrying out this
work. We view these questions as important avenues for future
research that expand on the broad ideas presented here.

What Data and Data Models Are Most Appropriate for
Theory Development? Psychological theories will be most suc-
cessful if a multitude of different data types and data models are
employed in developing them. For dynamical systems theories of
mental disorders, intensive longitudinal data in large samples may
play an especially important role as such data can provide rela-
tively direct measurements of the components of the target system
with reasonably high sampling frequency. Experimental data in
which the target system is perturbed or manipulated may similarly
be especially valuable, as it can help better inform conclusions
about causal relations between different components of the target
system. However, it is important to note that other data types will
also be highly valuable. For example, we were able to use cross-
sectional epidemiological data to provide insight into the short-
comings of our theory of panic disorder, despite the absence of
longitudinal data or experimental control. In fact, the panic model
implies a wide variety of observational consequences: that panic
attacks should correlate with avoidance, but also that panic attacks
will unfold on a shorter time scale than does learning to avoid
panic-related situations, that perceived threat and arousal should
move in a synchronized fashion as panic attacks build up, and that
specific interventions on the system should produce specific
theory-implied behavior. This allows for a much more detailed
picture of which kinds of observations to expect if the theory is
correct, and thus opens up a range of possibilities for informing
theory development using a wide range of data models. This is a
property we expect to be present in any theory which is formalized
with a sufficient level of specificity. In other words, if we have a
formal theory, then we do not need to choose between cross-sec-
tional and intensive longitudinal research or between observational
and experimental data. Rather, we can leverage the information
provided by each of these data models to inform theory develop-
ment using the approach we have proposed here.

Regardless of the type of data model, it is critical to the
approach we have proposed that the data models used to inform
theory be robust. Mental disorders are extremely heterogeneous
and multifactorial, which means that large amounts of carefully
sampled data are required both to establish the phenomena that
should be explained by a formal theory, and to inform the develop-
ment of the theory. If the phenomenon itself does not generalize in
the intended population, it is futile to engage in theory construc-
tion, because it is unclear whether there is any phenomenon to be
explained in the first place. Similarly, if the data models used for
theory development are not reliable and generalizable, theory de-
velopment becomes an exercise of fitting noise, and different
research teams will disagree about theory development because
they base their decisions on noisy data sets that point in different
directions. Formal theory construction in psychiatry and clinical
psychology will therefore be substantially strengthened by initiat-
ing large-scale data collection efforts aimed at establishing and
characterizing mental health phenomena.

How Do I Know If I Have the Right Measurement
Function? Discrepancies between empirical and theory-implied
data models can arise from both the theory and from the measurement
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function that connects the formal theory with the data. This poses a
significant barrier to our ability to use empirical data to inform theory
development. This barrier is not unique to the approach we have pro-
posed here. Discrepancies between theoretical predictions and the
findings from empirical research can only ever be attributed to the
conjunction of theory and auxiliary hypotheses (e.g., measurement
functions), never to the theory alone (Meehl, 1978; Robinaugh et al.,
2021). This problem is pervasive in psychology, where we are typi-
cally unsure about the precise relationship between the observed vari-
ables in our data and the components of our target system (Kellen et
al., 2020). Indeed, the causal connection between attributes of the real
world and observed data is notoriously hard to establish (Borsboom et
al., 2004), especially at the level of higher order latent constructs (e.g.,
“internalizing”, the “p-factor”; Caspi et al., 2014; Krueger, 1999). As
a result, psychology lacks the elegant coordination between mathe-
matical theory and observational data that often characterizes the
physical sciences (Wigner, 1963).

Although our approach does not resolve this fundamental issue,
it helps to address it by forcing researchers to be transparent about
their measurement assumptions. Comparisons between theory-
implied and empirical data models require that measurement
functions be formalized, and thus, made explicit and available for
critical evaluation. This allows researchers to evaluate whether
the posited measurement function may have given rise to any
observed discrepancies between the theory-implied and empirical
data models. In principle, this means that data model comparisons
can improve both our theories and our measurement models: If we
have a formal theory that is already well-established based on dif-
ferent data types, it is less likely to be the source of data model dis-
crepancies than the measurement function itself and the and so it
the proposed measurement function may require revision. Con-
versely, if a given measurement function has been well-estab-
lished, any observed discrepancies may be more readily attributed
to the theory. This suggests that formal theories and measurement
models must be developed in parallel, with the development of
one strengthening the development of the other.

When is Theory Adaptation Warranted? We suspect it is
unlikely that empirical and implied data models will ever be
exactly the same in most areas of psychology. Indeed, we should
not necessarily aspire for them to be equivalent, as formal theories
are representations only of the target system and are not intended
to represent all aspects of the real world that could bear on the
data. We therefore need a way to decide whether a disagreement
between the empirical and theory-implied data model is due to sto-
chastic noise (e.g., sampling variance) or whether this indicates a
flaw in how our theory represents the target system. Only the latter
would warrant adapting the formal theory or associated auxiliary
hypotheses. One possible means of informing this decision is to
compute the likelihood of both the empirical and implied data
model given the empirical data, and use statistical procedures to
compare both likelihoods. This could entail, for example, a likeli-
hood ratio test or the computation of a Bayes-factor. If we con-
clude that the likelihoods are not sufficiently different, revision of
the theory may not be warranted and we can tentatively conclude
that the theory can explain the empirical data model. On the other
hand, if we conclude that the likelihoods are sufficiently different,
it calls for an adaptation to be made to either our theory or our
auxiliary hypotheses.

When Has an Adaptation Improved the Theory? Once we
have adapted our formal theory, we would like to test whether
those adaptations lead to robust improvements in the correspon-
dence between the theory-implied and empirical data models. We
can again make use of a likelihood ratio test or Bayes factor,
except that here our comparison is not between empirical and
implied data models, but rather between the implied data models
of the original formal theory and the implied data models of the
adapted formal theory. That is, we can compare the likelihood of
the empirical data given those two implied data models.

Notably, our discussion of theory adaptations to this point has
focused only on “local optimization,” providing an adapted formal
theory that fits the present data better than the original formal
theory. However, that same adaptation could worsen the fit with
other types of data. This possibility presents a major challenge to
theory development, because it means that we can get stuck in a
process of adapting the formal theory to increase the fit to one type
of data, while decreasing the fit to a number of other data sets. To
avoid this problem and properly evaluate whether an adaptation
improves the theory more globally, we need strategies that take
the fit to all available data into account when choosing whether to
adapt a formal theory. This is a difficult task. However, it is likely
that relevant methodology can be adapted from fields with a longer
tradition of formal theory development which frequently deal with
this problem.

When Should a Theory Be Developed and When Should It
Be Abandoned? The theory development stage can have two
possible outcomes. One is that the theory becomes increasingly
difficult to develop, because each adaptation introduced to better
fit a certain data set worsens the fit to a set of other data sets. For
such “degenerative” theories (Meehl, 1990; Lakatos, 1976), it is
most appropriate to return to the theory generation stage and
choose a different starting point. Alternatively, iteratively complet-
ing the steps of deducing data models and adapting the formal
theory may lead to a theory that not only explains the core phe-
nomena, but also explains many related phenomena with high pre-
cision. In this case, the formal theory is ready for the final step of
theory testing.

Stage 3: Testing Theory

In the framework we have proposed here, the heavy-lifting of
theory construction is done in the generation and development
stages. Theory generation is not merely the act of writing down a
plausible explanation, it is precisely specifying a mathematical or
computational model and showing that the model can explain the
phenomena of interest. Theory development is not merely
expounding on one’s initial ideas, it is demonstrating an expansion
of its explanatory breadth and precision. The great majority of the-
ories in psychology remain in the stage of theory generation and
exceedingly few have demonstrated the kind of explanatory
breadth and precision that would suggest they no longer require
further development. Accordingly, we anticipate nearly all theory
construction efforts in psychology and psychiatry for the foreseea-
ble future will be focused on generating and developing theories
with considerable explanatory capacity. Nonetheless, we do think
there is a final stage of theory construction worth noting: that of
the traditional hypothesis test.
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Importantly, this stage of theory construction does not call for
null hypothesis significance tests, but rather strong tests of a
theory; tests of risky predictions that render the theory vulnerable
to refutation (Meehl, 1990). Risky predictions are those that would
be unlikely were it not for the theory. To take an example from
another domain of science, perhaps one of the most remarkable
instances of a risky prediction occurred more than 150 years ago,
when two astronomers observed that the orbit of Uranus deviated
from the orbit anticipated by Newtonian physics and determined
that these deviations could be explained by the presence of an as
yet unseen planet (Bamford, 1996). Using Newtonian physics,
they predicted the presence and precise location of this previously
undiscovered celestial body and, startlingly, their prediction was
correct. The planet Neptune was discovered. This prediction was
spectacularly unlikely in the absence of Newton’s theory, so, when
the prediction bore out, it afforded the theory enormous credibility.

The example of Neptune’s discovery is instructive not only
because it illustrates the kinds of tests that afford corroboration,
but also because it clarifies the kinds of theories that can support
such risky tests. The existence of Neptune was predicted when the
theory failed to account for the orbit of Uranus. Yet, despite this
discrepancy between the theory and empirical data, astronomers
did not abandon the theory. Rather they doubled down, asserting
that if there was a discrepancy between the theory and our knowl-
edge of the universe, the problem must lie with our knowledge of
the universe. More precisely, they determined the problem was
with their auxiliary hypothesis that there were no unaccounted for
celestial bodies affecting the orbit of Uranus and they revised these
hypotheses rather than the core of the theory. This allegiance to
the theory was only possible because the theory had been so well-
developed and shown to explain so much that it had already
accrued substantial credibility long before this dramatic risky pre-
diction. In the face of a discrepancy between the theory’s predic-
tion and the empirical data, astronomers inferred the best
explanation for the discrepancy and used that insight in conjunc-
tion with the theory itself to make a highly specific risky predic-
tion. Accordingly, this example suggests that to subject a theory to
arisky prediction, the theory should have already gained consider-
able credibility and must be capable of making precise predictions.

Formal theories that have gone through the stages of theory gen-
eration and development we have outlined here will meet these
criteria. In the theory development stage, the theory will have
gained credibility by demonstrating its explanatory breadth and it
will be capable of supporting strong hypothesis testing by allowing
the researcher to derive predictions sufficiently precise that they
would be unlikely in the absence of the theory. As in the theory
development stage, the theory testing stage thus calls for us to
deduce the precise data models implied by our theory and to com-
pare those implied data models with empirical data models. For
example, a very well-developed theory of panic disorder would be
able to predict the peak value of perceived threat likely to result
from a particular arousal-inducing manipulation (e.g., by breathing
CO2 enriched air; Roberson-Nay et al., 2017). More importantly,
it may predict that previously unconsidered treatments should be
effective in the treatment of panic disorder or that a characteristic
pattern of target system behavior signifies vulnerability to panic
attacks, thereby identifying a marker of vulnerability that can sup-
port preventive interventions before the disorder arises (Robinaugh
et al., 2019). Regardless of the prediction, as this stage of theory

construction, when theory-implied data models are compared with
empirical data models, the aim is not to develop the theory, but to
corroborate or refute the theory.

The function of this stage of theory construction is thus less to
build the theory than it is to show whether the theory is ready to
stand on its own. It is an attempt to demonstrate to other research-
ers and applied practitioners that the theory is sufficiently well
developed that it can make clear and accurate predictions about
what we will see in the real world. Accordingly, research at this
stage must be confirmatory in the strictest sense of the term
(Wagenmakers et al., 2012). These studies should be preregistered
with model simulations showing the formal theory, formalized
measurement, and specific analyses that will be used in the study
and, thus, the precise data model that the researcher expects to
observe. A theory that passes such a strong test by predicting the
observed empirical data model will be strongly corroborated, hav-
ing demonstrated that practitioners can trust the theory to help
them predict and control the world around them. For example,
using the theory to identify those in need of care, make diagnostic
decisions, and determine the most appropriate treatment. Theory
testing is thus the final stage of theory construction that must be
passed before a theory is ready to be taken out of the hands of
researchers and used effectively in the real world, firmly and reli-
ably supporting not only explanation, but also the prediction and
control of psychological phenomena.

Discussion

In this article, we examined how data models can best inform
the development of formal theories of psychopathology. We
focused especially on the network approach to psychopathology
and considered three possible routes by which the conditional de-
pendence networks used in this literature may inform formal theo-
ries about how mental disorders operate as complex systems. We
found that these data models were not themselves capable of rep-
resenting the structure we presume will be needed for a formal
theory of any mental disorder. Perhaps more surprisingly, we also
found that we were unable to draw clear and reliable inferences
from data models about the underlying system. Importantly, this
analysis is not intended as a critique of the specific data models we
examined here, nor is it a dismissal of their value. Quite the oppo-
site. These data models provide rich and valuable information
about the relationships among components of a system and we
strongly suspect that our concerns about their ability to inform
theory would hold for any data model that can feasibly be esti-
mated from empirical data. Nonetheless, our analysis does
strongly suggest that the network approach to psychopathology
cannot succeed using these data models alone.

We found that the most promising use of empirical data models
for theory development was to compare them with theory-implied
data models. Building on this observation, we proposed the abduc-
tive formal theory construction framework (AFTC), a roadmap for
theory construction that specifies how data models can best be
used in the generation, development, and testing of formal theo-
ries. In this framework, formal theories play an active role in their
own development, with an initial formalized theory refined over
time through ongoing comparison between theory-implied and
empirical data models. The foundation of this approach is the gen-
eration of an initial formal theory that initiates a cycle of theory
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development. Within this cycle of theory development, theory-
implied data models and empirical data models are compared and
abductive inference regarding any discrepancy between these
models is used to guide ongoing revision to the theory. Only after
an extended period of development is the theory well-equipped to
undergo rigorous theory testing.

As theory construction in psychology progresses, we believe it
will be important to integrate theories across levels of analysis.
Formalizing theories as mathematical or computational models
makes them explicit, transparent, and expressed in a language that
is consistent across domains of science, thereby rendering them
widely accessible to researchers across disciplines. This is espe-
cially noteworthy in the context of theories of psychopathology,
because there are other disciplines that bear on or are directly con-
cerned with mental health that already have strong traditions of
mathematical and computational modeling. For example, there is a
rich tradition of formal theory in the domains of mathematical and
cognitive psychology that focuses on understanding the healthy
functioning of thoughts, emotions, and behaviors. Integrating such
theories with the kinds of formal theories we have emphasized in
this article could help us to produce theories that can represent sys-
tems both in healthy and unhealthy states of functioning, and
explain the transition between those states (e.g., in the develop-
ment or treatment of psychopathology; Haslbeck, 2020). Similarly,
the highly formalized field of computational psychiatry studies
functional pathways in the brain, and how dysfunctional versions
of them lead to symptoms of mental disorders (e.g., Friston et al.,
2014; Huys et al., 2016; Stephan & Mathys, 2014; Wang & Krys-
tal, 2014). Results from computational psychiatry can inspire
mechanisms for models on the higher level of analysis we have
emphasized here, and constrain such models by their neuroscien-
tific plausibility.

Theories at these distinct levels of analysis could ultimately be
integrated to produce more comprehensive theories that can
account for phenomena across multiple levels of analysis. The
promise of this type of multiscale modeling approach has recently
been discussed in the field of biological psychiatry (Joshi et al.,
2020; Lytton et al., 2017; Readhead et al., 2018). If we are to de-
velop these comprehensive multiscale models of these disorders, it
will be necessary to have well-developed formal theories at each
level of analysis, including the behavioral, cognitive, and affective
level that is the focus of this article. This level of analysis is highly
relevant to clinical practice, both because it is the level at which
the core objects of psychiatry (i.e., signs and symptoms) reside
(Parnas et al., 2013) and because many first-line treatments for
mental disorders operate at this level (e.g., cognitive behavioral
therapy). Ultimately, we hope that formalizing theories across
these related disciplines and across different levels of analysis will
allow for more unified and collaborative development of theories
of psychopathology, with theoretical gains in one area (e.g., a
model of neurobiological function) facilitating gains in others
(e.g., a model of panic disorder; Cicchetti & Dawson, 2002; Kop-
niksy et al., 2002).

We have argued that research on mental disorders will be best
advanced by constructing formal theories of psychopathology and
we have put forward a framework that posits how best to use data
models at each stage of theory construction. This framework has
the potential to help our field tackle the complexities of mental
health, connect psychiatric research to work in basic psychological

science, and to better integrate research on psychopathology across
different levels of analysis. We do not intend this framework to be
a prescription for how all research must proceed, but rather a guide
that can provide researchers with ideas for how to advance their
theories. We would also stress that any given researcher need not
engage in all aspects of the work outlined in this framework.
Indeed, we suspect some division of labor in psychology would
strengthen the field, allowing some researchers to focus on rigor-
ous detection and description of empirical phenomena while others
focus on the generation and evaluation of rigorous formal theories
that explain those phenomena. The approach we have proposed
here provides a framework in which these diverse efforts, across
different domains and different levels of analysis, can work to-
gether to advance our understanding of psychopathology. Indeed,
we believe that it will only be through this ongoing collaboration
and integration across researchers that we will be able to leverage
the empirical literature to produce genuine advances in our ability
to explain, predict, and control psychopathology.
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Appendix A

Simulated Data From the Panic Model

In this appendix we describe in more detail how raw time series
data is simulated from the panic model, the full specification of
which is given by Robinaugh et al., 2019. Data is simulated using
the statistical programming language R. We use the panic model to
generate time-series data of 1,000 individuals, on a single minute
time scale, for 12 weeks, using Euler’s method with a step size of
.001. This yields a total of n, = 12,0960 repeated measurements
per person. Each individual starts with a different initial value of
arousal schema, drawn from a normal distribution with p = .25
and o = .0225. The parameters of this distribution were chosen
to roughly generate a representative number of panic disorder

sufferers (for more details see Robinaugh et al., 2019). Otherwise
each individual obtains the same parameter values and the same
starting values on all processes, with the stochastic noise terms
drawn using a different random seed for each individual. The map-
ping from this raw data to the variables used in the network models
presented in Figure 5 is described in the main text. Code to repro-
duce this data-generation scheme can be found in the reproducibil-
ity archive of this article.®

8 https://osf.io/bnteg/

Appendix B

Panic Model and Statistical Dependencies

In this appendix we describe in more detail the patterns of
statistical dependencies produced by the three data models
fitted to data simulated from the panic model presented in
Figure 5. While in the main text we discuss the statistical
dependencies between arousal and perceived threat, and arousal
schema and avoidance, here we focus only on the former. Key to
the arousal-perceived threat dependencies is the positive feed-
back loop between arousal and perceived threat in the panic
model. If arousal and perceived threat become sufficiently ele-
vated, this “vicious cycle” leads to runaway positive feedback,
with a pronounced spike in both arousal and perceived threat
(i.e., a panic attack). This spike initiates a process of homeostatic
feedback that brings arousal down and suppresses arousal below
its baseline for a period of time after this panic attack, a period
which we will refer to as a recovery period. The panic attack
itself lasts about 30 min. However, the recovery period lasts for
2-3 hr (see Figure Bla).

In the VAR model in Figure 5b in the main text, we observed
a strong negative conditional relationship between perceived
threat at time t and arousal at time t + 1, conditioning on all other
variables at time t. The distribution of these lagged variables is
shown in Figure B1b, with the gray line representing the also neg-
ative marginal relationship. This strong negative cross-lagged rela-
tionship is a direct consequence of the recovery period of arousal:
High values of perceived threat are closely followed by a long pe-
riod of low arousal values. This can be seen in Figure B1b, where
observations over windows in which a panic attack and recovery
period occur are shaded in gray. By averaging arousal values over
a window of 90 min, the strong positive causal effects operating

locally in time (i.e., over a very short time-interval) are not directly
captured, but instead the VAR(1) model describes correctly
describes the negative relationship between the means of each
variable over this window.

In the GGM in Figure 5c in the main text, we saw a positive
linear relationship between arousal and perceived threat in the
estimated GGM. This dependency indicates that high mean
levels of arousal are associated with high mean levels of per-
ceived threat, conditional on all other variables. We stress the
conditional nature of this relationship, because the marginal
relationship between the two variables is in fact negative as can
be seen in Figure Blc. This negative marginal relationship
comes about by combining two groups of individuals that have
different mean values on both variables. Individuals who expe-
rience panic attacks (gray points) have high average perceived
threat, but low average arousal, due to the long recovery period
of arousal after a panic attack. On the other hand, individuals
who do not experience panic attacks have higher average val-
ues of arousal, and lower average values of perceived threat.
When inspecting the two groups separately, we see that there is
a positive linear relationship between mean arousal and per-
ceived threat in the group without panic attacks. The group
with panic attacks is too small to determine a relationship.
Because escape and avoidance behavior only occur after panic
attacks, conditioning on those two variables amounts to condi-
tioning on whether an individual had panic attacks. This condi-
tional relationship is then driven mostly by the positive
relationship in the (much larger) group of individuals who have
no panic attacks, indicated by the black dots in Figure Blc.

(Appendices continue)


https://doi.org/10.1016/j.neuron.2014.10.018
https://doi.org/10.1119/1.1969254
https://doi.org/10.1007/s11229-009-9618-5
https://osf.io/bnteg/

This document is copyrighted by the American Psychological Association or one of its allied publishers.

This article is intended solely for the personal use of the individual user and is not to be disseminated broadly.

26

HASLBECK, RYAN, ROBINAUGH, WALDORP, AND BORSBOOM

Figure B1
Explanation of Negative Relationship Between Arousal and Perceived Threat in Data Models
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Note. Panel a depicts arousal during a panic attack, showing the short sharp peak of arousal levels, followed by a longer recov-

ery period of low arousal, before the system returns to the usual resting state. The dotted line indicates the mean level of arousal
over the observation window (0 hr—10 hr). Panel b depicts the state-space plot of perceived threat and arousal at the next mea-
surement occasion, as captured by the emulated ESM study and VAR model. Gray points indicate an observation window of 90
min in which either part of a panic attack or the following recovery period is captured. The solid gray line reflects the marginal
lagged relationship. Panel ¢ depicts the crosssectional marginal relationship between the mean of arousal and mean of perceived
threat, as analyzed in the GGM model. Gray dots indicate individuals who suffer from panic attacks, and black dots represent
“healthy” individuals. The solid gray line shows the negative marginal relationship. The dotted gray lines indicate the median of

both variables, by which the binarized values used in the Ising model analysis are defined.

Finally, we can explain the weak positive relationship
between arousal and perceived threat in the Ising model
(Figure 5d in the main text): The levels of these variables
are defined by a median split of their mean values, depicted
as dotted lines in Figure Blc. Unlike in the GGM, there is a
positive marginal relationship between these binarized vari-
ables, as the majority of individuals without panic attacks
(denoted by the black points) end up in the low perceived
threat and low arousal groups (lower left quadrant Figure
Blc) or high perceived threat and high arousal groups
(upper right quadrant). How then do we end up with a
weakly positive conditional relationship between these two
binary variables? Similarly to the GGM above, it turns out

that conditioning on variables such as escape behavior and
avoidance almost entirely separates individuals into either
the low arousal and low perceived threat category (e.g., for
low escape values) or the high arousal and high perceived
threat category (for high escape value). This means that,
once we have conditioned on other variables which have
direct and indirect causal connections to arousal and per-
ceived threat, there is very little additional information
which arousal can add to predicting perceived threat levels
(and vice versa). This produces the weak positive condi-
tional relationship between arousal and perceived threat, as
well as the stronger positive connections between avoidance
and perceived threat.

Appendix C

Details Empirical Versus Simulated Ising Model

In this appendix we describe in more detail how the theory-implied
and empirical Ising models presented in Figure 6 are obtained.

C.1. Simulated Data and Implied Ising model

To obtain the theory-implied Ising model we use the raw
time-series data generated from the panic model and described
in Appendix A.

To create the binary symptom variables, we transformed the
raw time-series data of each individual as follows. First, we define
anxiety at a given time point as the geometric mean of the arousal
and perceived threat components at that point in time. Second, we
define a panic attack as short, sharp peak of arousal and perceived
threat. We code a panic attack to be present in the time-series data

if anxiety takes on a value greater than .5. The duration of a panic
attack is the length of time the anxiety variable stays above this
threshold, and so we define a single panic attack as a sequence of
consecutive time points in which anxiety stays over this threshold.
This allows to define our first binary symptom variable, recurrent
panic attacks:

1. Recurrent panic attacks (PA): PA is present if the indi-
vidual experience more than three panic attacks over the
observation window.

We define recurrent as more than three over the observation
window for consistency with how this symptom is defined in
the CPES dataset, detailed below.

(Appendices continue)
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Next, we can define the symptom persistent concern (PC),
again using the time-series of anxiety. This symptom is typically
described as experiencing a heightened level of anxiety follow-
ing a panic attack (American Psychiatric Association, 2013). To
define this, for each individual who experiences a panic attack,
we calculate the mean level of anxiety in a window of 1,000 min
(16.67 hr) following the end of each panic attack. If another
panic attack occurs in that window, we instead take the mean
level of anxiety between the end of one panic attack and before
the beginning of the next. This gives us a vector of mean anxiety
levels per person, one for each panic attack experienced. Next,
we must define what we consider to be a “heightened” level of
anxiety. We do this by obtaining the distribution of mean anxiety
levels for healthy individuals, that is, those members of our sample
who never experience a panic attack. We consider mean anxiety
levels following an attack to be “heightened” if they are greater
than the 90th percentile of mean anxiety levels in the healthy popu-
lation. This gives us our second binary symptom variable.

2. Persistent Concern (PC): PC is present if, following at
least one panic attack, higher average levels of Anxiety
are present than in the healthy population, as defined by
the 90th percentile of average Anxiety in the healthy
population.

Finally we take a similar approach to defining the symptom
avoidance (Av), typically described as engaging in a heightened
level of avoidance behavior following a panic attack. For this
symptom, we use the time-series of the avoid component. For each
individual who experiences a panic attack, we calculate the mean
level of avoid in a window of 1,000 min (16.67 hr) following the
end of each panic attack, or before the beginning of the next attack,
whichever is shorter. Heightened avoidance behavior is defined
relative to the 90th percentile of avoid levels in the healthy popula-
tion. This gives us our third binary symptom variable.

3. Avoidance (Av): Av is present if, following at least one
panic attack, higher average levels of avoid are present
than in the healthy population, as defined by the 90th per-
centile of average avoid in the healthy population.

Table C1
CPES Diagnostic Criteria

The Ising model of these three symptom variables is fit
using the Estimatelsing function from the IsingSampler pack-
age (Epskamp, 2015), that is, using a nonregularized pseudoli-
kelihood method.

C.2. Empirical Symptom Data

To test the empirical predictions of the panic model, we
made use of the publicly available Collaborative Psychiatric
Epidemiology Surveys (CPES) 2001-2003 (Alegria et al.,
2007). The CPES is a nationally representative survey of men-
tal disorders and correlates in the United States. The CPES is
attractive to use for testing the panic model, first because of the
large sample size (20,013 participants) ensuring reliable esti-
mates of empirical dependencies, and second, because approxi-
mately 146 items in the survey assess either panic attack or
panic disorder experiences, characteristics, and diagnoses, typi-
cally in terms of lifetime prevalence.

To define our three panic disorder symptoms, we first use
the diagnostic manual of the CPES to define whether individ-
uals have ever experienced a panic attack based on responses
to 18 items. There are three criteria which must be met for
the individual to be classed as having experienced at least
one lifetime panic attack. These are shown in Table C1. In
coding the presence or absence of a panic attack, individuals
must positively report at least four out of the 31 characteris-
tics of a panic attack, according to the second criteria in
Table C1. Missing values were taken as a failure to report
that characteristic.

With this definition of a panic attack in place, we define the
three binary symptoms of panic disorder, following the defini-
tions laid out in the diagnostic manual for panic disorder.

1. PA: PA is present if participant reports more than three
lifetime occurrences of an unexpected, short, sharp attack
of fear or panic (Item PD4 and criteria in Table C1), more
than one of which is out of the blue (PD17a).

Criterion Description Ttem number(s)
A A discrete period of intense fear or discomfort SC20 or SC20a
B (four or more) Palpitations, pounding heart PDla
Sweating PDle
Trembling or shaking PDI1f
Sensation of shortness of breath or smothering PDI1b
Feeling of choking PD1h
Chest pain or discomfort PDli
Nausea or abdominal distress PDlc
Feeling dizzy, unsteady, lightheaded or faint PDI1d or PDIm
Derealization or depersonalization PDl1k or PDI1
Fear of losing control or going crazy PD1j
Fear of dying PDIn
Paresthesia (numbing or tingling sensations) PDI1p
Chills or hot flushes PDlo
C Symptoms developed abruptly and reached a peak within 10 min PD3

Note.

CPES = Collaborative Psychiatric Epidemiology Surveys. Table shows the three criteria necessary to code an individual as having one liftetime

panic attack based on their responses specific to CPES survey items, with corresponding item numbers. Criteria are taken from the CPES diagnostic

manual.

(Appendices continue)
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2. PC: PC is present if reported that following an attack, a
month or more of at least one of: (a) persistent concern about
having another attack (PD13a); or (b) worry about the impli-
cations or consequences of having an attack (PD13b).

3. Av: Av is present if participant reports at least one of: (a)
following an attack, changing everyday activities for a
month or more (PD13c¢); (b) following an attack, avoiding
situations due to fear of having an attack for a month or
more (PD13d); or (c) in the past 12 months, avoiding situa-
tions that might cause physical sensation (PD42).

In coding this, if two out of three PA criteria were present,
and the third was missing, we assigned a positive value to the
PA item. The empirical Ising model was fit using the same pro-
cedure as the theory-implied Ising model.
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